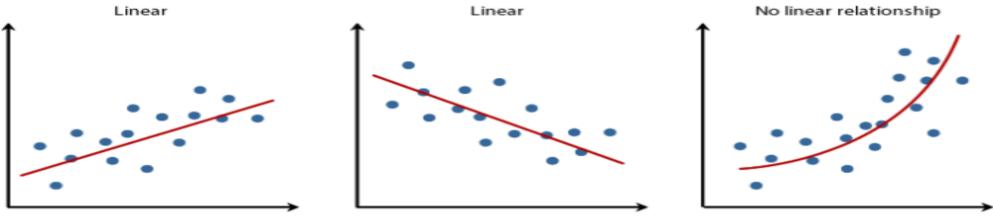
RESEARCH METHODS FOR CLINICAL INVESTIGATORS Session 7:

Correlation & Linear Regression

Veronica G. Brown, PhD, MSPH

Objectives

At the end of the presentation, the audience will be able to:


- Understand the concept of a linear relationship
- Understand the concept of correlation
- Understand and explain regression
 - Independent vs. Dependent Variable
 - Slope and intercept

Linear Relationship

• What does it mean?

Any relationship bet

ween two variables that creates a line

Copyright 2014. Laerd Statistics.

Correlation

- The linear association between two variables
 - Comparisons
 - Two continuous (numerical) variables
 - A continuous variable and a categorical variable
 - Examine the linear relationship between the two variables

Correlation cont'd

- Pearson's r
 - Correlation coefficient
 - Ranges from -1 to +1
- Correlation Strength
 - 0-0.19: Very weak
 - 0.20-0.39: Weak
 - 0.4-0.59: Moderate
 - 0.60-0.79: Strong
 - 0.80-1: Very Strong

Correlation cont'd

Correlation Matrix

	Hours spent studying	Exam score	IQ score	Hours spent sleeping	School rating
Hours spent studying	1.00	0.82	0.48	-0.22	0.36
Exam score	0.82	1.00	0.33	-0.04	0.23
IQ score	0.08	0.33	1.00	0.06	0.02
Hours spent sleeping	-0.22	-0.04	0.06	1.00	0.12
School rating	0.36	0.23	0.02	0.12	1.00

1.) <u>https://www.statology.org/how-to-read-a-correlation-matrix/</u>

2.) Motulsky, Harvey. (2014). Intuitive Biostatistics: Nonmathematical Guide to Statistical Thinking. Oxford University Press

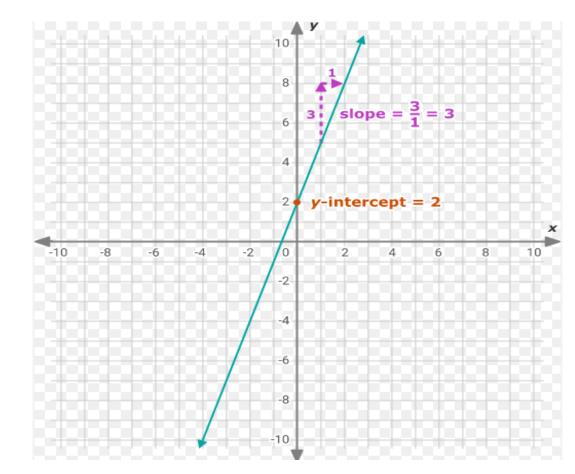
Linear Regression

- Examines the relationship between two or more variables in a model
 - Independent variables added to a model can be continuous (numerical) or categorical

- Outcome of interest: Continuous
 - Similar to ANOVA

Motulsky, Harvey. (2014). Intuitive Biostatistics: Nonmathematical Guide to Statistical Thinking. Oxford University Press

• Determines the specific influence of the independent variable on the outcome


Ex. Influence of Age on Weight What is the relationship between age and weight

Baker, Charlotte (2014). Introduction to Epidemiology. Virginia Tech University

• Slope & y-intercept

Slope: Describes the steepness of the line

Y-intercept: Point where the line crosses the y-axis

Motulsky, Harvey. (2014). Intuitive Biostatistics: Nonmathematical Guide to Statistical Thinking. Oxford University Press
<u>https://www.ixl.com/math/lessons/slope-intercept-form</u>

• Slope & y-intercept

$\mathbf{Y} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{x}$

 β_1 = slope, X is the independent variable β_0 = y-intercept, Y is the dependent variable (outcome)

- Age and Weight
 - Age (Independent Variable)
 - Weight (Dependent/Outcome Variable)

Parameter Estimates						
Variable	Label	DF	Parameter Estimate		t Value	$\mathbf{Pr} \ge \mathbf{t} $
Intercept	Intercept	1	-76.10604	538.56978	-0.14	0.8879
AGE	REPORTED AGE IN YEARS	1	11.9348 <mark>5</mark>	<mark>9.6098</mark> 9	<mark>1.2</mark> 4	<mark>0.217</mark> 2

- Age
 - Parameter Estimate: 11.9
 - Std. Error: 9.6
 - P-value: 0.22

Interpretation

For every 1 year increase in age, there is an increase of approximately 12 pounds in weight

**P-value is not statistically significant

Baker, Charlotte (2014). Introduction to Epidemiology. Virginia Tech University

- Multiple Variables can be implemented into a linear model
 - Multiple Linear Regression

Ex. Influence of Age and Sex on Weight What is the relationship between age and sex on weight?

- Age and Weight
 - Age & Sex (Independent Variables)
 - Weight (Dependent/Outcome Variable)

Parameter Estimates							
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	Intercept	1	-724.34408	733.80043	-0.99	0.3260	
AGE	REPORTED AGE IN YEARS	1	9.04482	9.83323	0.92	0.3599	
SEX	RESPONDENTS SEX	1	497.24959	383.84537	1.30	0.1982	

• Age

- Parameter Estimate: 9.04
- Std. Error: 9.8
- P-value: 0.36

• Sex

- Parameter Estimate: 497.2
- Std. Error: 383.8
- P-value: 0.20

• Entire model is not significant

Interpretation

For every 1 year increase in age, there is an increase of approximately 9 pounds in weight

**P-values are not statistically significant

Baker, Charlotte (2014). Introduction to Epidemiology. Virginia Tech University
Motulsky, Harvey. (2014). *Intuitive Biostatistics: Nonmathematical Guide to Statistical Thinking*. Oxford University Press

- Multiple Variables can be implemented into a linear model
 - Multiple Linear Regression

Ex. Influence of several variables on Weight What is the relationship between these variables and weight?

Age Sex General Health Smoking Status Sleep Quality Education Level

- Independent Variables
- Weight (Dependent/Outcome Variable)

Parameter Estimates								
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	Intercept	1	-1058.20116	1037.99673	-1.02	0.3106		
AGE	REPORTED AGE IN YEARS	1	7.00190	10.24668	0.68	0.4961		
SEX	RESPONDENTS SEX	1	438.87772	392.02099	1.12	0.2658		
GENHLTH	GENERAL HEALTH	1	-239.64731	162.91181	-1.47	0.1447		
_SMOKER3	COMPUTED SMOKING STATUS	1	54.72797	161.29796	0.34	0.7352		
QLREST2	HOW MANY DAYS DID YOU GET ENOUGH SLEEP IN PAST 30 DAYS	1	2.16899	<mark>4.9725</mark> 5	<mark>0.4</mark> 4	0.6637		
_EDUCAG	COMPUTED LEVEL OF EDUCATION COMPLETED CATEGORIES	1	289.59263	154.54648	1.87	0.0641		

• Age

- Parameter Estimate: 7.0
- Std. Error: 10.2
- P-value: 0.50

• Sex

- Parameter Estimate: 438.9
- Std. Error: 392.0
- P-value: 0.27

• General Health

- Parameter Estimate: -239.6
- Std. Error: 162.9
- P-value: 0.14
- Smoking Status
 - Parameter Estimate: 54.7
 - Std. Error: 161.3
 - P-value: 0.74

- Sleep Quality
 - Parameter Estimate: 2.17
 - Std. Error: 4.97
 - P-value: 0.66
- Education
 - Parameter Estimate: 289.6
 - Std. Error: 154.5
 - P-value: 0.06

Summary

- Linear Relationships
 - Correlation
 - Linear Regression

