RESERACH METHODS FOR CLINICAL INVESTIGATORS Session 5:

Calculating Sample Size and Statistical Power for a Study

Veronica G. Brown, PhD, MSPH

Objectives

At the end of the presentation, the audience will be able to:

- Understand the importance of statistical power in a study
 - Hypothesis Testing
- Determine the sample size of a study
- Determine the statistical analysis plan after calculating sample size
- Summarize the components needed to apply for NIH funding

Power & Sample Size

Why are they important in research?

- Includes a small sample of subjects w/ a particular characteristic vs. the whole population → Make inferences for the whole population
- Determine the number of subjects needed in a study -Helps to answer the hypothesis

Hypothesis Testing

Statistical procedure used to make an assumption about the parameters of a population or its distribution

Null (H_0): Null hypothesis states that there <u>is NO</u> statistical relationship

Alternative (H_A) : Alternative hypothesis states that there is a statistical relationship

		Experiment Results	
		Accept Null Hypothesis	Reject Null Hypothesis
Actual True	Null Hypothesis is True	Correct	Type I Error (False Positive) Alpha 0.05
	Null Hypothesis is False	Type II Error (False Negative) Beta	Correct

1.) Gordis, Leon. (2018). *Epidemiology*. Saunders Elsevier; 2.) Schmidt, S. (2018). Research Techniques Made Simple: Sample Size Estimation and Power Calculation. Journal of Investigative Dermatology. Vol 138(8). <u>https://doi.org/10.1016/j.jid.2018.06.165</u>

- Type I Error (False Positive)
 - Erroneous conclusion that study results between groups <u>are</u> different when in fact they really <u>aren't</u> different
 - Reject the Null (H_0) when in fact the Null (H_0) is <u>**TRUE**</u>

• Probability of Type I Error: α (alpha)

1. Motulsky, Harvey. (2014). *Intuitive Biostatistics: Nonmathematical Guide to Statistical Thinking*. Oxford University Press 2. Gordis, Leon. (2018). *Epidemiology*. Saunders Elsevier.

- Type II Error (False Negative)
 - Erroneous conclusion that study results between groups <u>aren't</u> different when in fact they really <u>are</u> different
 - Fail to reject the Null (H₀) when in fact the Null (H₀) is <u>FALSE</u>

• Probability of Type II Error: β (Beta)

1. Motulsky, Harvey. (2014). *Intuitive Biostatistics: Nonmathematical Guide to Statistical Thinking*. Oxford University Press 2. Gordis, Leon. (2018). *Epidemiology*. Saunders Elsevier.

- Probability of Type I Error
 - α (alpha) \rightarrow p-value, i.e. p < 0.05

 Probability that such a difference could have arisen by chance

Caveat: Type I Error should be small thus illustrating very little error in the study when making conclusions from results

- Probability of Type II Error
 - β (Beta) \rightarrow Power of study (1- β)

• Probability that it is correctly determined that the study results between groups <u>DIFFER</u>

Type I & Type II Error

	Decision: Delete as Junk	Decision: Place in Inbox
Good Email	Type I Error	(No Error)
Spam	(No Error)	Type II Error

Sample Size Calculations

Study type	Formulas	Explanations
Proportion in survey type of studies	$N = \frac{Z_{\alpha/2}^2 \times P \times (1 - p) \times D}{E^2}$	- N - sample size
		P - prevalence or proportion of event
		E - precision (or margin of error) with which a researcher want to measure something
		D - design effect reflects the sampling design used in the survey type of study. This is 1 for simple random sampling and higher values (usually 1 to 2) for other designs such as stratified, systematic, cluster random sampling
		Z _{α/2} - 1.96 for alpha 0.05
Sample size newer and offer	t size revisited; simplified and practical a	annroachas in pro clinical clinical and

Serdar, C. (2021). Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. *Biochem Med (Zagreb)*. Vol 31(1). doi: <u>10.11613/BM.2021.010502</u>

Sample Size Calculations cont'd

Group mean

 $N = Z_{a/2}^2 s^2/d^2$

s - standard deviation obtained from
previous study, or pilot study

d - accuracy of estimate or how close to the true mean

 $Z_{\alpha/2}$ -1.96 for alpha 0.05

Serdar, C. (2021). Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. *Biochem Med (Zagreb)*. Vol 31(1). doi: <u>10.11613/BM.2021.010502</u>

Statistical Analysis Plan

- 1. Method of Data Collection (Primary vs. Secondary)
 - a) Survey: Questionnaire
 - b) Medical Charts
 - c) Interviews
- 2. Hypothesis Testing: Reject/Accept (Null= H_0 vs. Alternate= H_A) *p-value > 0.05= <u>Accept</u> the H₀ and reject H_A, No difference in groups p-value ≤ 0.05= <u>Reject</u> the H₀ and accept H_A, Difference in groups*

2. Gordis, Leon. (2018). *Epidemiology*. Saunders Elsevier

Dahiru.T., et al. (2008). P-value, A true test of statistical significance; A cautionary note. Ann Ib Postgrad Med. 6(1): 21-26. <u>doi: 10.4314/aipm.v6i1.64038</u>

Statistical Analysis Plan cont'd

- 3. Measures of Association
- Odds Ratio (OR): Case-Control
- Relative Risks (RR): Cohort
- Hazard Ratio (HR): Randomized Clinical Trials

Research Question \rightarrow Study Design \rightarrow Data Collection \rightarrow Analysis \rightarrow Publication

Applying for NIH Funding

Necessary:

- 1. Sample size estimation
- 2. Study Power

***Hypothesis testing and generalizability to whole population

3. Statistical Analysis Plan

Applying for NIH Funding cont'd

Necessary:

Statistical Analysis Plan

**Must analyze data by gender and race regardless of detecting statistical differences between groups

https://www.researchmethodsresources.nih.gov/

https://www.prevention.nih.gov/education-training/pragmatic-and-group-randomized-trials-public-health-and-medicine

Summary

Specifications of Estimating Sample Size

- 1. Difference in response rates to be detected
- 2. Estimate of the response rate in one of the study groups
- 3. Level of statistical significance (α)
- 4. Value of power desired (1- β)
- 5. Hypothesis Testing: 1-sided vs. 2-sided tests

POWER ANALYSIS STATISTICS

Armstrong, A. (2022). How many Samples Do I Need? Determining Sample Size for Statistically Significant Results. *The BYU Design* 19 *Review*