RESEARCH METHODS FOR CLINICAL INVESTIGATORS Session 2:

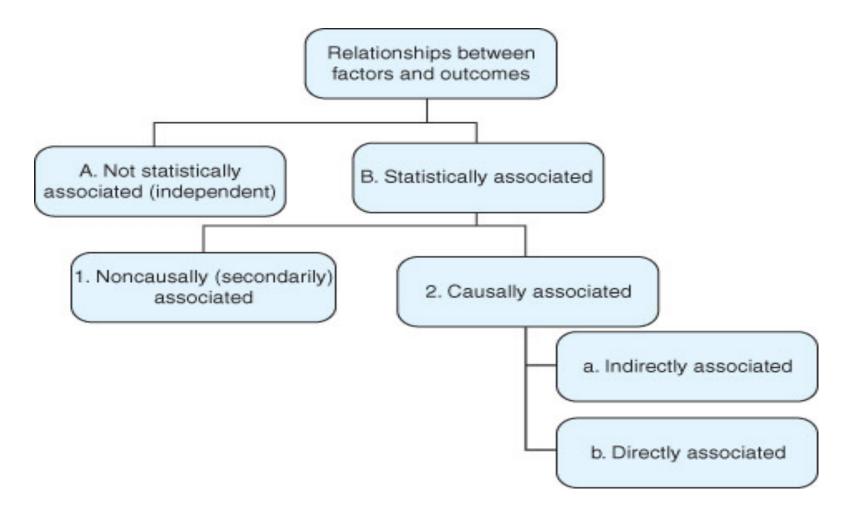
What am I Estimating during a Study: Measure of Association or Causation?

Veronica G. Brown, PhD, MSPH

Objectives

At the end of the presentation, the audience will be able to:

- Define the differences between measure of association and causation
- List the measures of associations
- Interpret the measures of association


What's the Difference

- Measure of Association
 - Quantifies a relationship between two variables, i.e.
 Exposure and Outcome

- Causation
 - One event is the result of the occurrence of the other event

- 1. Odds Ratio (OR): Case-Control
- 2. Relative Risks (RR): Cohort
- 3. Hazard Ratio (HR): Randomized Clinical Trials

Associations between exposure and outcome

Data from B MacMahon and TF Pugh, Epidemiology Principles and Methods. Boston, MA: Little, Brown and Company; 1970

Evaluating Epidemiologic Associations

- Key questions to be asked every time you evaluate an association:
 - 1. Could the association have been observed by chance?
 - i. Potentially determined through statistical tests, i.e. p-values, Confidence Intervals (CI)
 - 2. Could the association be due to bias?
 - i. Bias= Systematic errors, Ex. Sample selection or how data was analyzed
- 1. Gordis, Leon. (2018). *Epidemiology*. Saunders Elsevier.
- 2. Baker, Charlotte (2014). Introduction to Epidemiology. Virginia Tech University

Evaluating Epidemiologic Associations cont'd

- 3. Could other variables account for the observed relationship?
 - i. Confounders, i.e. Smoking and diabetes increases the risk of Cardiovascular Disease (CVD)
- 4. Does this association represent a cause-and-effect relationship?
 - i. Consideration for "Criteria of Causality"

- 1. Gordis, Leon. (2018). *Epidemiology*. Saunders Elsevier.
- 2. Baker, Charlotte (2014). Introduction to Epidemiology. Virginia Tech University

Measures of Association

Exposure Status

Odds Ratio

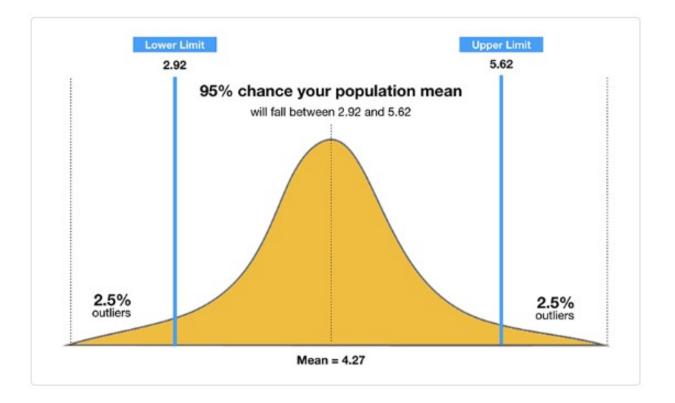
Disease Status

		Yes (Cases)	No (Controls)			
	Yes	А	В			
	No	С	D			
		A+C	B+D			
Odds		A/C	B/D			
Odds Ratio AD/BC						

• Measures of Association- OR

OR>1: The odds of exposure among cases are **greater** vs controls OR=1: The odds of exposure is the **same** for both study groups OR<1: The odds of exposure among cases are **less** vs controls

Anticoagulation with heparin did not increase the likelihood of survival to hospital discharge or medical support for respiratory adverse events among patients diagnosed with COVID-19 vs those who received the standard thromboprophylaxis¹ *(Adjusted OR: 0.83, 95% CI 0.67-1.03)¹


Bradbury, C., McVerry, B., et al. (2021). Therapeutic Anticoagulation with Heparin in Critically III Patients with COVID-19. N England J Med. 385(9): 777-789. doi: 10.1056/NEJMoa2103417

*Confidence Intervals (CI)

- Point estimate (i.e. OR, RR, HR) is important <u>BUT</u>:
- Interval of values that, with a given probability, contains the TRUE value of the population parameter
- No statistical association when the Cl does include or contain 1
 Ex. (Adjusted OR: 0.83, 95% Cl 0.67-1.03)¹

1. Bradbury, C., McVerry, B., et al. (2021). Therapeutic Anticoagulation with Heparin in Critically III Patients with COVID-19. *N England J Med*. 385(9): 777-789. doi: 10.1056/NEJMoa2103417

Confidence Intervals (CI)

Relative Risk

Disease Status

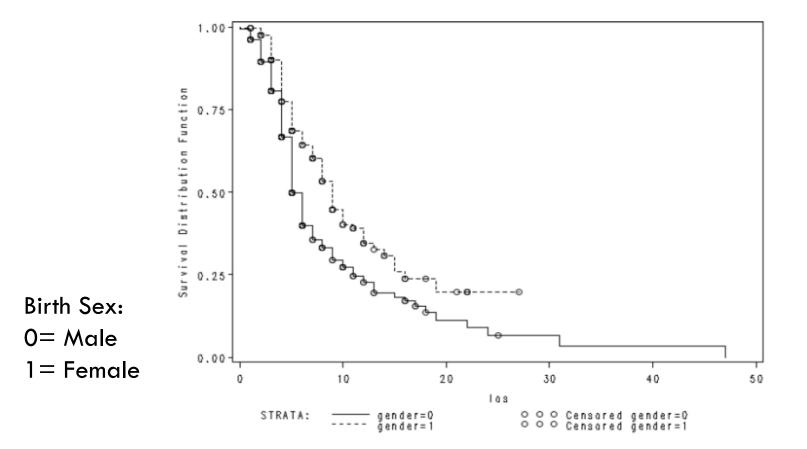
Exposure Status - Yes	Yes	No	Totals	Incidence Total
	А	В	A+B	A/(A+B)
No	С	D	C+D	C/(C+D)
	A + C	B + D	N	

Relative Risk [A/A+B]/[C/C+D]

Measures of Association- RR

RR>1: The risk in exposed group is **greater** than the risk in non-exposed group RR=1: The risk in exposed group is **=** to the risk in non-exposed group RR<1: The risk in exposed group is **less** than the risk in non-exposed group

• Shift work and insufficient sleep increased risk of coronary heart disease ¹ (RR: 1.23, 95% CI 1.15-1.31)


Hazard Ratio (HR) Time (t)

Hazard =
$$HR_{Exposed}(t)$$

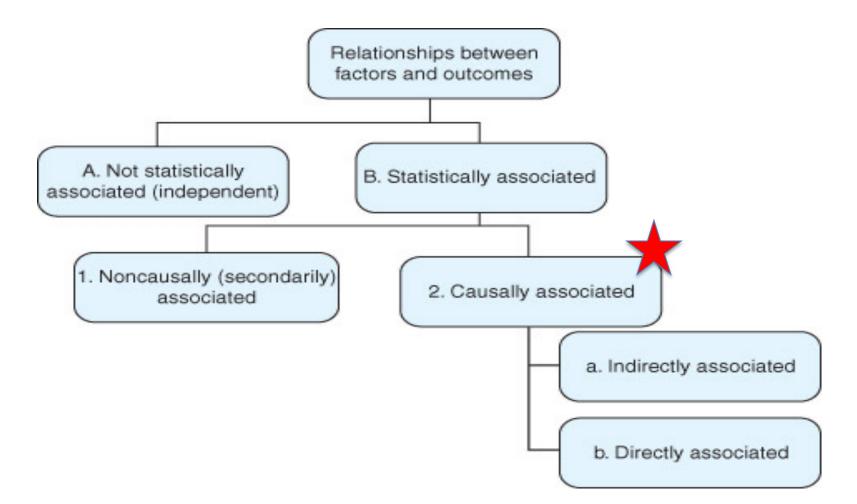
 $HR_{Unexposed}(t)$

HR can be calculated using:

- 1. Cox Proportional Hazards Model
- 2. Kaplan Meier Curve

Kaplan Meier Curve: Acute Myocardial Infarction (MI)

1. Millett, E. et al. (2018). Sex Differences in Risk Factors for Myocardial Infarction: Cohort Study of UK Biobank Participants. *BMJ*. 363. doi: <u>https://doi.org/10.1136/bmj.k4247</u>


Measures of Association- HR

HR>1: The hazard in exposed group is greater than the non-exposed group HR=1: The hazard in exposed group is the same in non-exposed group HR<1: The hazard in exposed group is less than the non-exposed group

 Cardiovascular Rx reduces risk of major cardiovascular events in patients w/ Type II diabetes and previous myocardial infarction¹ (HR: 0.84, 95% CI 0.72-0.99)

^{1.} Furtado, R., Bonaca, M., et al. (2019). Dapagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Previous Myocardial Infarction. *Circulation*. 139(22): 2516-2527. doi: 10.1161/CIRCULATIONAHA.119.039996.

Associations between exposure and outcome

Data from B MacMahon and TF Pugh, Epidemiology Principles and Methods. Boston, MA: Little, Brown and Company; 1970

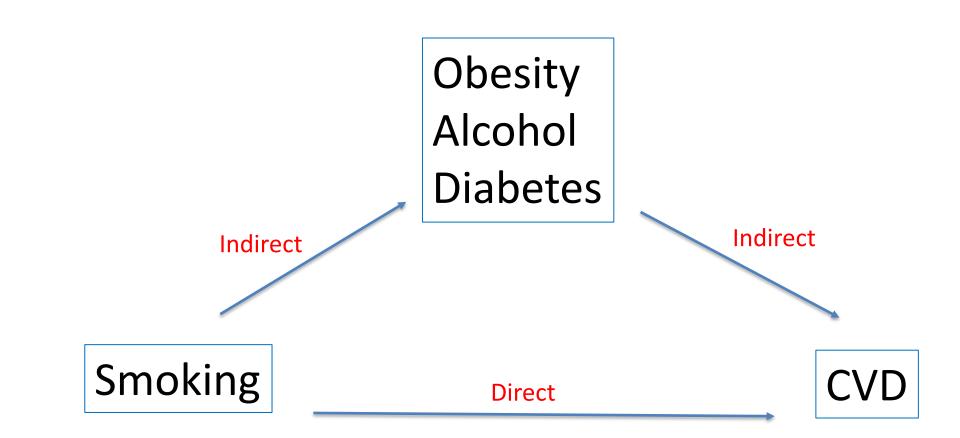
Evaluating Criteria for Causation

Five key questions to determine causation, *Hill's Criteria*:

- 1. Biological Plausibility
 - i. Is there a reasonable pathway to link exposure to outcome
- 2. Consistency
 - i. Can the same results occur if repeated in a different time, place, person?

Evaluating Criteria for Causation cont'd

3. Temporality

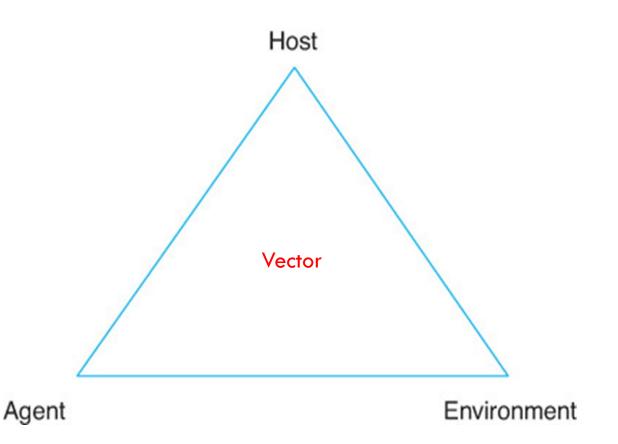

- i. Does the exposure occur before the outcome?
- 4. Strength
 - i. Is there strength in the relationship between the exposure and outcome, with or without a dose-response relationship?
- 5. Specificity
 - i. Is the outcome unique or specific to the exposure?
- 1. Gordis, Leon. (2018). *Epidemiology*. Saunders Elsevier.

Causation

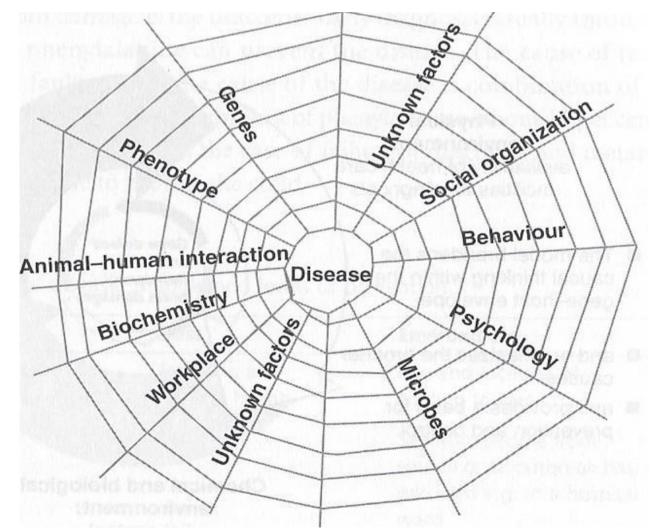
- "....requirement that one or more factors be present for disease to develop.."¹
 - 1. Direct: No intervening causes or factors that result in outcome
 - 2. Indirect: Intervening causes or factors that still result in outcome

• Mutiple Causality Multifactorial Etiology

1. Gordis, Leon. (2018). Epidemiology. Saunders Elsevier.


- 1. Gordis, Leon. (2018). *Epidemiology*. Saunders Elsevier.
- 2. Leary, P. (2016). Causality, Correlation, and Cardiac Disease: Does Smoking cause Cardiac Hypertrophy and Diastolic Dysfunction. *Circulation: Cardiovascular Imaging*. 9(9). doi.org/10.1161/CIRCIMAGING.116.005441

- Models of Multiple Causality
 - Epidemiologic Triangle
 - Web of Causation
 - Wheel Model
 - Pie Model


• Causal Models help to interpret Epidemiological data

• Epidemiologic Triangle

- Intersection of the Host, the Agent, the Environment, and **Vector
- Ex. Malaria
- 1. Host-Person
- 2. Agent- Plasmodium falciparum
- 3. Environment- Hot, Humid, Tropical Climate
- 4. Vector- Mosquito

- Web of Causation
 - 1. No single cause
 - 2. Causes of disease are interacting
 - 3. Causality may be two way
- Ex. Disease \rightarrow CVD
 - Genetics, Behavior, Stress, etc.

1. Gordis, Leon. (2018). Epidemiology. Saunders Elsevier.

ASSOCIATION \neq CAUSATION

Summary cont'd

Estimation of Study

- Measure of Association-Quantification of relationship between two variables
- Ex. Statistical association between smoking and CVD
- Causation-One event is the result of the occurrence of the other event
- Ex. Smoking causes CVD¹

^{1.} Leary, P. (2016). Causality, Correlation, and Cardiac Disease: Does Smoking cause Cardiac Hypertrophy and Diastolic Dysfunction. *Circulation: Cardiovascular Imaging*. 9(9). doi.org/10.1161/CIRCIMAGING.116.005441