High-Flow Oxygen & Mechanical Ventilation

Donna Lynch-Smith, DNP, ACNP-BC, APRN, NE-BC, CNL
Associate Professor/AG-ACNP Concentration Coordinator
UTHSC CON
High-Flow Oxygen
High-Flow Oxygen Nasal Cannula (HFNC)

• Oxygen Supply System that Can Deliver 100% Humidified Heated Oxygen at Flow Rate of 60 liters per minute

• Mechanisms of HFNC
 Soft Pliable Prongs (Makes seal reducing entrainment)
 Warms and Humidifies Air
 Physiological Dead Space Washout Upper Airway
 CPAP Effect
 Decreases Nasopharyngeal Airway Resistance
High-Flow Oxygen Nasal Cannula (HNFC)

• Clinical Application
 - Acute Hypoxic Respiratory Failure
 - Cardiogenic Pulmonary Edema
 - Post-Operation
 - Pre-Intubation
 - Post-Extubation
High-Flow Oxygen Nasal Cannula (HFNC)

Settings

- Flow Rate (5 to 60 liters per minute)
- FiO2 (0.21 to 1.0)

Initial Set Up

Flow - may want to start at 20-35 liters per minute and titrate to patient’s work of breathing (WOB).
FiO2 – titrate to SpO2 goal

With increasing flow rate may be able to decrease FiO2
High-Flow Oxygen Nasal Cannula (HFNC)

Monitoring of Patient

- Work of Breathing
- Respiratory Rate
- Breath Sounds
- Subcutaneous Emphysema
- Chest X-Rays
- CT of Thorax
High-Flow Oxygen Nasal Cannula

- **Studies**
 - High-Flow Oxygen through Nasal Cannula in Acute Hypoxic Respiratory Failure
 - Canadian Medical Association Journal (2017)
 - Effect of High Flow Nasal Cannula Oxygen Therapy in Adults with Acute Hypoxemic Respiratory Failure: A Meta-Analysis of Randomized Control Trials
High-Flow Oxygen Nasal Cannula

• Studies Continued
 Efficacy of High-Flow Nasal Cannula Therapy in Intensive Care Units: A Meta-Analysis of Physiological Outcomes

Severe Covid-19
High-Flow Oxygen Nasal Cannula

• Case Study
 26-Year-Old male with no significant past medical history. Presents to emergency room with fever, chills and shortness of breath accompanied with dry cough for three days.

CXR – Multifocal Pneumonia
CT Thorax – Diffuse Bilateral Pulmonary Infiltrates
Positive for COVID-19
Elevated D-Dimer/Ferritin/LDH/ALT/AST
High-Flow Oxygen Nasal Cannula

• Case Study Continued

Antibiotic – Azithromycin
Remdesivir
Convalescent Plasma
Tocilizumab
High-Flow Oxygen Nasal Cannula

• Case Study Continued
 Days 1 & 2 - Nasal Cannula 2-3 liters BNC with SpO2 97-99%
 Day 3 – SpO2 decreased to 90%
 ABGs 7.44/37/72/26/95% on 3 liters BNC
 6 liters BNC to NRB with SaO2 100%
 Day 4 – Increased shortness of breath with SpO2 of 90%
 HFNC – Flow 30 liters per minute with FiO2 of 0.60 with SpO2 @ 100%
 Day 5 - HFNC – Flow 30 liters per minute with FiO2 of 0.60 with SpO2 @ 97%
 Day 6 – HFNC – Flow 30 liters per minute with FiO2 of 0.50 with SpO2 of 93%
 Day 7 – Changed to BNC 8 liters per minute with SpO2 of 90%
 Day 8 – BNC 3 to 5 liters per minute with SpO2 of 90%
Mechanical Ventilation
Mechanical Ventilation – Covid-19

Atelectasis and Interstitial Pneumonia
Severe Hypoxia

• **Intubation**
 Rapid Sequence Intubation (RSI)
 Protective Equipment

• **Mechanical Ventilation**
 Target ARDSnet high PEEP,
 Lung protective tidal volume
 4-8 ml/kg ideal body weight
 Lower inspiratory pressures (plateau pressure < 30cmH2O)
 SpO2 88-95%
Mechanical Ventilation – COVID-19

• Assessment
 Breathing Pattern (Increase WOB)
 Oxygenation
 Peak Inspiratory Pressure/Plateau Pressure
 Frequency/Exhaled Tidal Volume
 AutoPEEP
 Patient-Ventilator Synchrony (Waveforms)
 Breath Sounds
 Excursion
 Palpation for Subcutaneous Emphysema
 Monitor CXRs
Mechanical Ventilation – COVID-19

• Early Proning
 ARDS and PaO2/FiO2 ratio <150
 Protective Equipment

• Consider Extracorporeal Membrane Oxygenation
 Lung protective tidal volume
 4-8ml/kg ideal body weight
 Lower inspiratory pressures (plateau pressure < 30cmH2O)
Case Study - Mechanical Ventilation

• 50-Year-Old Male
 Presented with complaints of shortness of breath and productive cough for two weeks
 Slightly tachypneic with SpO2 of 54% on room air.
 Placed on SFM 10 liters per minute with SpO2 89%
 Became tachypneic (50 breaths per minute) with desaturation of 70%

• Patient was intubated and placed on Mechanical Ventilation
 Day 1 - Assist Control 550/16/10 with FiO2 of 100% with SpO2 94%
 Day 2 - Assist Control 550/16/10 with FiO2 of 60% with SpO2 95%
 Proning
 Day 3 - Assist Control 450/18/10 with FiO2 60% with SpO2 of 95%
 Lung Protective Strategy
 Day 4 - Assist Control 450/18/14 with FiO2 60% with SpO2 of 95%
 Day 5 - Assist Control 450/22/14 with FiO2 60% with SpO2 of 95%
Case Study - Mechanical Ventilation

• Labs
 Elevated D-Dimer/Lactic Acid/Procalcitonin/Troponin
 Negative Blood, Sputum, and Urine Cultures

• Diagnostics
 CXR – Interstitial airspace disease
 CT Thorax (w/o) – Diffuse ground glass and alveolar infiltrates bilaterally
 CT Thorax (w) – Pulmonary embolism

• Medications
 Empiric Antibiotics/Dexamethasone/Lovenox
 Sedation
References

