
Hirschsprung disease, associated syndromes and
genetics: a review
J Amiel,1 E Sproat-Emison,2 M Garcia-Barcelo,3 F Lantieri,4,5 G Burzynski,6 S Borrego,7

A Pelet,1 S Arnold,2 X Miao,3 P Griseri,4 A S Brooks,6,8 G Antinolo,7 L de Pontual,1

M Clement-Ziza,1 A Munnich,1 C Kashuk,2 K West,2 K K-Y Wong,3 S Lyonnet,1

A Chakravarti,2 P K-H Tam,3 I Ceccherini,4 R M W Hofstra,6 R Fernandez,7 for
the Hirschsprung Disease Consortium
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ABSTRACT
Hirschsprung disease (HSCR, aganglionic megacolon)
represents the main genetic cause of functional intestinal
obstruction with an incidence of 1/5000 live births. This
developmental disorder is a neurocristopathy and is
characterised by the absence of the enteric ganglia along
a variable length of the intestine. In the last decades, the
development of surgical approaches has importantly
decreased mortality and morbidity which allowed the
emergence of familial cases. Isolated HSCR appears to be
a non-Mendelian malformation with low, sex-dependent
penetrance, and variable expression according to the
length of the aganglionic segment. While all Mendelian
modes of inheritance have been described in syndromic
HSCR, isolated HSCR stands as a model for genetic
disorders with complex patterns of inheritance. The
tyrosine kinase receptor RET is the major gene with both
rare coding sequence mutations and/or a frequent variant
located in an enhancer element predisposing to the
disease. Hitherto, 10 genes and five loci have been found
to be involved in HSCR development.

Harald Hirschsprung, a Danish paediatrician, first
described in 1888 two unrelated boys who died
from chronic severe constipation with abdominal
distension resulting in congenital megacolon.1 The
absence of intramural ganglion cells of the myen-
teric and submucosal plexuses (Auerbach and
Meissner plexuses, respectively) downstream of
the dilated part of the colon was recognised as the
cause of the disease in the 1940s.2 This allowed a
simple and reliable diagnostic confirmation from
rectal suction biopsies using histochemical staining
for acetylcholinesterase (AchE).3 In 1948, Swenson
and Bill developed a surgical procedure4 and the
survival of patients uncovered familial transmis-
sion of Hirschsprung disease (HSCR).5 In 1974,
Bolande proposed the term neurocristopathy for
syndromes or tumours involving the neural crest
(NC) cells.6 HSCR resulting from an anomaly of
the enteric nervous system (ENS) of NC origin is
therefore regarded as a neurocristopathy.6–8

Isolated HSCR appears to be of complex, non-
Mendelian inheritance with low, sex-dependent
penetrance, variable expression according to the
length of the aganglionic segment and suggestive
of the involvement of one or more gene(s) with
low penetrance.5 9 These parameters must be taken
into account for accurate evaluation of recurrence
risk in relatives. With a relative risk as high as 200,

HSCR appears an excellent model to study
common multifactorial diseases. The major sus-
ceptibility gene is RET, which is also involved in
multiple endocrine neoplasia type 2 (MEN 2) and
familial medullary thyroid carcinoma (FMTC).
Coding sequence mutations are identified in about
50% and 15% of familial and sporadic HSCR cases,
respectively. The far most frequent HSCR predis-
posing event at the RET locus is a haplotype which
comprises an SNP lying in an enhancer element of
RET intron 1. The identification of modifier genes
is currently underway by using various approaches
and an international consortium has been settled
in 2004 in order to achieve this goal.
HSCR occurs as an isolated trait in 70% of

patients, is associated with a chromosomal
abnormality in 12% of the cases, and with
additional congenital anomalies in 18% of the
cases.10–15 In the latter group of patients, some
monogenic syndromes can be recognised. Indeed,
thus far, genetic heterogeneity in HSCR has been
demonstrated with 10 specific genes involved. The
aim of this paper is to update a 6 year old review
on clinical and molecular data about isolated and
syndromic HSCR.

DEFINITION AND CLASSIFICATION
HSCR is a congenital malformation of the hindgut
characterised by the absence of parasympathetic
intrinsic ganglion cells in the submucosal and
myenteric plexuses.2 It is regarded as the conse-
quence of the premature arrest of the craniocaudal
migration of vagal neural crest cells in the hindgut
between the fifth and 12th week of gestation to
form the enteric nervous system (ENS) and is
therefore regarded as a neurocristopathy.6 16 While
the internal anal sphincter is the constant inferior
limit, patients could be classified as short-segment
HSCR (S-HSCR: 80% of cases) when the aganglio-
nic segment does not extend beyond the upper
sigmoid, and long-segment HSCR (L-HSCR: 20%
of cases) when aganglionosis extends proximal to
the sigmoid. Four HSCR variants have been
reported: (1) total colonic aganglionosis (TCA, 3–
8% of cases)17; (2) total intestinal HSCR when the
whole bowel is involved17; (3) ultra-short segment
HSCR involving the distal rectum below the pelvic
floor and the anus18; (4) suspended HSCR, a
controversial condition, where a portion of the
colon is aganglionic above a normal distal segment.
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CLINICAL FEATURES AND DIAGNOSIS
In most cases, the diagnosis of HSCR is made in the newborn
period15 due to intestinal obstruction with the following
features: (1) delayed of passage of meconium (.24 h after
birth); (2) abdominal distension that is relieved by rectal
stimulation or enemas; (3) vomiting; and (4) neonatal entero-
colitis. Some patients are diagnosed later in infancy or in
adulthood with severe constipation, chronic abdominal disten-
sion, vomiting, and failure to thrive.19 Finally, although a rare
presentation, unexplained perforation of the caecum or appen-
dix should make the diagnosis considered.
On abdominal x ray a distended small bowel and proximal

colon, with absence of rectal gas, are common findings. The
classical image is a dilated proximal colon with the aganglionic
cone narrowing towards the distal gut. On barium enema a
small rectum with uncoordinated contractions is seen. The
transitional zone represents the site where the narrow
aganglionic bowel joins the dilated ganglionic bowel. On a
delayed plain x ray taken 24 h after the enema, barium retention
is observed. Anorectal manometry shows absence of relaxation
of the internal sphincter (rectal inhibitory reflex) in response to
rectal distension.20 The reliability of this test becomes excellent
from day 12 after birth where the normal rectoenteric reflex is
present.21 Suction rectal biopsy remains the gold standard for
confirming the diagnosis in most cases demonstrating an
increased acetyl cholinesterase activity.22 Nonetheless, full
thickness rectal biopsy is the golden standard in reaching the
diagnosis. Furthermore, seromuscular biopsies will be needed at
operation to define the proximal limit of the aganglionic
segment.

DIFFERENTIAL DIAGNOSES
Other causes of intestinal obstruction should be discussed when
abdominal distension and failure to pass meconium occur in a
newborn infant: (1) meconium ileus resulting from cystic
fibrosis; (2) intestinal malformations such as lower ileal and
colonic atresia, isolated or occasionally associated with HSCR,
intestinal malrotation or duplication; (3) ENS anomalies
grouped as chronic intestinal pseudo-obstruction syndromes;
and (4) functional intestinal obstruction resulting from mater-
nal infection, maternal intoxication or congenital hypothyroid-
ism.

TREATMENT AND PROGNOSIS
The treatment of HSCR is surgical. After careful preoperative
management, the underlying principle is to place the normal
bowel at the anus and to release the tonic contraction of the
internal anal sphincter. Since the initial protocol of Swenson
described in 1948,4 a series of operative approaches, such as the
Soave and Duhamel procedures, have been developed.23 24 A one
stage procedure is possible when diagnosis is made early, before
colonic dilatation, in short segment disease. Otherwise, a
primary colostomy is required. For long segment disease and
total colonic aganglionosis, temporary enterostomy is often the
first step in management before definitive surgery. Laparoscopic
and transanal pull-through techniques have been proposed more
recently in HSCR surgery.25 These techniques can provide
patients with almost scarless surgery. Comparative long term
results are pending.26 27 Neuronal precursor cells isolated from
the developing human ENS may open the route to cell
therapy.28 29 Fistula or stenosis of the anastomosis and entero-
colitis are the main short term complications.30 Long term
complications include chronic constipation (10–15%) and

soiling.31 32 Mortality has been below 6% since the 1980s and
may be related to short term complications or caused by the
associated malformations.31 However, the treatment of children
with TCA remains hazardous.33 34

EPIDEMIOLOGY
The incidence of HSCR is estimated at 1/5000 live births.5

However, the incidence varies significantly among ethnic
groups (1.0, 1.5, 2.1, and 2.8 per 10 000 live births in
Hispanics, Caucasian-Americans, African-Americans, and
Asians, respectively).15 S-HSCR is far more frequent than
L-HSCR (80% and 20%, respectively).10 12 There is a sex bias
with a preponderance of affected males and a sex ratio of 4/1.35

Interestingly, the male:female ratio is significantly higher for
S-HSCR (4.2–4.4) than for L-HSCR (1.2–1.9) (table 1).15 35

MOLECULAR GENETICS IN ISOLATED HSCR
Several genes have been implicated in isolated HSCR, the two
major ones being RET and EDNRB.

The RET signalling pathway
The first susceptibility locus was mapped to 10q11.2 in
multigenerational families segregating HSCR as an incompletely
penetrant autosomal dominant trait.36 37 This region had been
targeted because of the observation of an interstitial deletion of
chromosome 10q11 in patients with TCA and mental retarda-
tion.38 The proto-oncogene RET (REarranged during
Transfection), identified as disease causing in MEN 239 40 and
mapping in 10q11.2, was regarded as a candidate gene owing to:
(1) co-occurrence of MEN 2A and HSCR in some families; and
(2) expression in neural-crest derived cells. Consequently, RET
gene mutations were identified in HSCR patients (fig 1).41 42

Over 100 mutations have been identified including large
deletions encompassing the RET gene, microdeletions and
insertions, nonsense, missense and splicing mutations.43–46

There is no mutational hot spot at variance with MEN 2A,
where mutations occur in a cluster of six cysteines (exon 10:
residues 609, 611, 618, 620; exon 11: residues 630,634),39 40 47 and
MEN 2B where the mutation is almost unique (M918T, exon
16, tyrosine kinase domain).48–51 In vitro, MEN 2 mutations have
been shown to be activating mutations leading to constitutive
dimerisation of the receptor and to transformation,52 while
haploinsufficiency is the most likely mechanism for HSCR
mutations.53–57 Biochemical studies demonstrated variable con-
sequences of some HSCR mutations (misfolding, failure to
transport the protein to the cell surface, abolished biological
activity).54 56 58 However, a simple activating versus inactivating
model of gene action is not sufficient to explain the co-
occurrence of HSCR and MEN 2A in patients with a MEN 2A
RET gene mutation.51 59

Table 1 Epidemiology and recurrence risk figures in HSCR

L-HSCR S-HSCR

% probands 19 81

Sex ratio (male:female) 1.75 5.5

Genetic model Dominant Multifactorial or recessive

Penetrance (%) (male:female) 52:40 17:4

Recurrence risk to sibs* (%)

Male proband 17/13 5/1

Female proband 33/9 5/3

Relative risk = 200.
*Recurrence risk is given for male/female siblings, respectively.
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Despite extensive mutation screening, a RET mutation is
identified in only 50% of familial and 15–20% of sporadic HSCR
cases.43 44 60 61 However, most families with few exceptions are
compatible with linkage at the RET locus.62 Case–control and
transmission disequilibrium test in several ethnic backgrounds
had first pointed to a frequent SNP lying in exon 2 and leading
to a silent change as over represented and transmitted in
patients (fig 1).63–68 Later, the same observation was made for
haplotypes comprising this SNP lying in exon 2 and an SNP at
–5 from the transcription start site of RET.69–72 As there was no
convincing evidence for a functional role of these two
SNPs,71 73 74 the most likely hypothesis was that an ancient,
low-penetrant founder locus was in linkage disequilibrium with
the haplotype of the two SNPs previously identified and distant
of about 25 kb.70 Comparative genomics focused on conserved
non-coding sequences and an SNP lying in intron 1 was shown
associated to HSCR susceptibility, making a 20-fold greater
contribution to risk than coding sequence mutations.75 This
T.C SNP lies in an enhancer-like sequence and the T allele
reduces in vitro enhancer activity.75 Moreover, this sequence
drives reporter expression in tissue consistent with the one of
Ret during mouse and zebra fish development.75 76 Interestingly,
the frequency of the predisposing T allele varies according to
HSCR prevalence in various ethnic backgrounds from about 20–
50% in European and Chinese, respectively.75 77 The T allele high
frequency in control populations emphasises, as speculated by
the oligogenic model, the pivotal role of the RET gene in HSCR
susceptibility despite low penetrance. Finally, the penetrance of
the T allele for the HSCR trait is both dose-dependent and
greater in males than in females.75 Conversely, an SNP lying in
the 39 UTR of the RET gene and lowering stability to RET
mRNA degradation has been shown to be under transmitted in
HSCR cases.78 Again, this SNP lies on a haplotype that is of
variable frequency according to ethnicity (about 8–4% in
Caucasian and absent in Chinese).71 79 80 A recombination spot
lies on intron 5 at the RET locus.59 66

RET is a 1114 amino acid transmembrane receptor with a
cadherin-like extracellular domain, a cysteine-rich region and a
intracellular tyrosine kinase domain.81 The role of Ret in mice
development has been expanded to kidney,82–84 spermatogen-
esis85–88 and Peyer’s patch.89 90 Between the two RET major
isoforms (RET9 and RET51) with different C-terminal tails as

the result of alternative splicing, RET9 is critical for both kidney
and ENS development.91

GDNF, known as a major survival factor for many types of
neurons, was shown to be the RET ligand by both phenotypic
similarities between Ret2/2 and Gdnf2/2 knock-out mice,92–94

and xenopus embryo bioassays.95 GDNF is a TGF-B related 211
residue protein, proteolytically cleaved to a 134 residue mature
protein that homodimerise. To activate RET, GDNF needs the
presence of a glycosylphosphatidylinositol (GPI)-linked co-
receptor GFRA1.96 97 Four related GPI-linked co-receptors,
GFRA1-4,98 and four related soluble growth factor ligands of
RET have been identified, namely: GDNF, NTN,99 persephin
(PSPN)100 and artemin (ARTN).101 Specific combinations of
these proteins are necessary for the development and main-
tenance of both central and peripheral neurons, and all can
signal through RET. GDNF mutations have been identified in
only six HSCR patients to date, and could be regarded as a rare
cause of HSCR (,5%).102–104 Moreover, GDNF mutations may
not be sufficient to lead to HSCR since 4/6 patients have
additional contributory factors, such as RET mutations or
trisomy 21.102 103 Similarly, an NTNmutation has been identified
in one family, in conjunction with a RET mutation.105 Finally,
although Gfra1 homozygous knock-out mice are phenotypically
very similar to Ret and Gdnf 2/2 mice, no GFRA1 mutations
have been identified in HSCR patients except a deletion at the
locus with incomplete penetrance in one family.69 106–109 Worth
noting, RET exerts a pro-apoptotic effect that is inhibited by
GDNF and some RET gene mutations may impair the control of
this activity by GDNF.110

The endothelin signalling pathway
The endothelin pathway was first studied for its vasoconstric-
tive effect and putative role in hypertension. EDNRB and
EDNRA are G-protein-coupled heptahelical receptors that
transduce signals through the endothelins (EDN1, 2, 3).111 112

A susceptibility locus for HSCR in 13q22 was pointed out for
three main reasons: (1) a significant lod-score at 13q22 in a large
inbred Old Order Mennonite community with multiple cases of
HSCR113–115; (2) de novo interstitial deletion of 13q22 in several
patients with HSCR116; (3) synteny between the murine locus
for piebald-lethal (sl), a model of aganglionosis, and 13q22 in
human. The critical role of the endothelin pathway in HSCR

Figure 1 Mutations, haplotypes and
recombination spot at the RET locus.
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was demonstrated with the finding that piebald-lethalwas allelic
to the Ednrb knock-out mouse and harboured an Ednrb
mutation (table 2).117 Subsequently, an EDNRB missense
mutation was identified in the Mennonite kindred
(W276C).118 However, the W276C mutation was neither
necessary (affected wild-type homozygotes) nor sufficient
(non-affected mutant homozygotes) to cause HSCR, and
penetrance was sex-dependent (greater in males than in
females).118 piebald-lethal was considered a mouse model for
WS4 in humans, and some of the Mennonite affected
individuals had pigmentary anomalies and sensorineural deaf-
ness in addition to HSCR.113 114 This prompted a screen of the
EDNRB gene in WS4, and homozygous mutations in a fraction
of WS4 families were found.44 At the same time, an Edn3
mutation was identified in the lethal spotting (sl) natural mouse
model for WS4119 and, subsequently, EDN3 homozygote
mutations were identified in WS4 in humans (table 2).120 121

Both EDNRB and EDN3 were screened in large series of
isolated HSCR patients. While EDN3 mutations were seldom
found,130 EDNRB mutations were identified in approximately
5% of the patients.126–129 It is worth mentioning that the
penetrance of EDN3 and EDNRB heterozygous mutations is
incomplete in those HSCR patients, de novo mutations have
not hitherto been observed, and that S-HSCR is largely
predominant. Interstitial 13q22 deletions encompassing the
EDNRB gene in HSCR patients makes haploinsufficiency the
most likely mechanism for HSCR (table 3). Although EDNRB
binds all three endothelins, the similarity of phenotype of the
Ednrb knock-out mice to that of the Edn3 knock-out mice
suggests that EDNRB’s major ligand is EDN3.
Preproendothelins are proteolytically cleaved by two related

membrane-bound metalloproteases to give rise to the mature
21-residue endothelin. Ece1 processes only Edn1 and Edn3. Ece1
knock-out mice show craniofacial defects and cardiac abnorm-
alities in addition to colonic aganglionosis.132 A heterozygous

ECE1mutation has been identified in a single patient combining
HSCR, craniofacial and cardiac defects (R742C).131

SOX10
The last known mouse model for WS4 in human is dominant
megalon (Dom), homozygous Dom mutation being embryonic
lethal.152 The Dom gene is Sox10, a member of the SRY (sex
determining factor)-like, high mobility group (HMG) DNA
binding proteins.125 Subsequently, truncating heterozygote
SOX10 mutations have been identified in patients with
WS4,122–124 Yemenite deaf-blind-hypopigmentation syndrome153

and WS2 (Bondurand et al in Am J Hum Genet website) but also
in patients presenting in addition neurological impairment due
to central and peripheral dysmyelination.67 123 The latter
combination is known as PCWH for Peripheral demyelination-
Central dysmyelinating leucodystrophy-Waardenburg syn-
drome and Hirschsprung disease. Genotype–phenotype correla-
tion relies on nonsense-mediated decay being effective (WS4) or
not (PCWH).154 The penetrance of the HSCR trait appears to be
high, although sibs sharing a mutation and discordant for HSCR
have been described in one family.124 Therefore, SOX10 is
unlikely to be a major gene in isolated HSCR.

Interaction between pathways
Ret and Ednrb signalling pathways were considered biochemi-
cally independent. However, G-protein-coupled receptors and
tyrosine kinase receptors could be engaged in crosstalk.
Moreover an HSCR patient heterozygote for weak hypo-
morphic mutations in both RET and EDNRB has recently been
reported.155 Each mutation was inherited from a healthy parent.
Genetic interactions between EDNRB and RET have been
demonstrated in the Mennonite population where HSCR
predisposition is high (incidence of 1/500).118 156 Finally, no
complementation of aganglionosis could be observed in mouse

Table 2 Genes involved in HSCR in humans and known mouse models of megacolon

Gene

Human Mouse

Map
location

Mode of
inheritance

Phenotype in
mutants Penetrance of the HSCR trait Refs

Natural
mutant Knockout Refs

RET 10q11.2 AD HSCR 70% in males and 50% in females
for CDS mutations

43, 44, 60, 61 – L
Renal agenesis

82

GDNF 5p13 AD HSCR 5 cases reported
Low penetrance

102–104 – L 92–94

Renal agenesis

NTN 19p13 AD HSCR 1 case reported 105 – –

SOX10 22q13 AD WS4 About 80% 122–124 Dom (AD) L
Coat spotting

125

EDNRB 13q22 AR/AD WS4/HSCR Low 118, 126–129 sl (AR) S
Coat spotting

117

EDN3 20q13 AR/AD WS4/HSCR 1 case reported 130 ls (AR) S
Coat spotting

119

ECE1 1p36 AD HSCR 1 case reported 131 – S
Coat spotting
Craniofacial defects

132

CF and cardiac
defect

ZFHX1B (SIP1) 2q22 AD MCA-MR, facial
gestal,

60% 133–135 – Letal at gastrulation 136

PHOX2B 4p12 AD CCHS 20% 137, 138 – TIA
No ANS
Ventilatory anomalies
in Phox2b+/2

139, 140

TCF4 18q21 AD Epileptic
encephalopathy

1 case 141–143 – Early letality
Abnormal maturation
of lymphocytes

144, 145

AD, autosomal dominant; ANS, autonomic nervous system; AR, autosomal recessive; CF, craniofacial; L, long-segment megacolon; MR, mental retardation; S, short-segment
megacolon; Spo, sporadic; sl, Piebald lethal; ls, lethal spotting; TIA, total intestinal aganglionosis.
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inter crosses between hypomorphic piebald alleles of Ednrb
(Ednrbs/s) and a null allele of Ret.156

Sox10 is involved in cell lineage determination and is capable
of transactivating MITF synergistically with PAX3.157 Similarly,
Ednrb transcripts are either absent or drastically reduced in
Dom2/2 and Dom+/2 mice, respectively.158 Sox10;Ednrb and
Sox10;Edn3 double mutants have a severe ENS defect with no
enteric progenitor cells extending beyond the stomach at all
embryonic stages studied.159 Interestingly, genetic interactions
for the HSCR trait have been shown between RET and PHOX2B
and BBS genes responsible when mutated for CCHS and Bardet-
Biedl syndromes, respectively.148 Such correlation was not found
between RET and SOX10. Along these lines, a genome-wide
screen aimed at localising modifier genes for the aganglionosis of
Dom mice did not point to the Ret locus but, among others, a
locus encompassing the PHOX2b gene.160

Taking it all together, several general comments can be made:
(1) RET is the major gene in HSCR with either CDS mutations
or, more frequently, a low penetrant SNP lying in an enhancer
element within intron 1; (2) RET mutation penetrance is
incomplete and sex-dependant; (3) genotype–phenotype corre-
lation is poor; 4) HSCR is genetically heterogeneous and due to
mutations in distinct pathways; (5) some patients with
mutations in more than one HSCR susceptibility gene are
known (RET+GDNF, RET+NTN, RET+EDNRB); (6) the RET
gene plays a role in HSCR penetrance of some but not all
syndromic HSCR (see below).

MULTIGENIC INHERITANCE OF ISOLATED HIRSCHSPRUNG
DISEASE
As mentioned above, RET plays a key role in HSCR genesis and
multiple genes may be required to modulate clinical expression.
On the other hand, genetic heterogeneity where mutation in
one of several genes is sufficient for phenotypic expression of
HSCR has been demonstrated (RET, EDNRB, EDN3, ECE1).
Segregation studies in HSCR showed that the recurrence risk in
siblings varies from 1.5–33% depending on the gender and the
length of the aganglionic segment in the proband, and the
gender of the sibling (table 1).5 35 Consequently, HSCR has been
assumed to be a sex modified multifactorial disorder, the effect
of genes playing a major role as compared to environmental
factors (relative risk of 200).
According to the segregation analysis where an autosomal

dominant model in L-HSCR and a multifactorial model in S-
HSCR were more likely, different approaches have been chosen
to test these hypotheses in L-HSCR and S-HSCR independently.
a. Linkage analysis in 12 HSCR families with three or more

affected individuals in two or more generations where L-
HSCR is largely predominant.62 All but one family showed

linkage to the RET locus. Mutational analysis identified a
nonsense or missense mutation at highly conserved residue
in six families, a splice mutation in two families and no
coding sequence variation in three families. Linkage to a
novel locus in 9q31 was identified only in families with no
or hypomorphic RET gene mutation. Therefore, a severe
RET mutation may lead to phenotypic expression by
haploinsufficiency while hypomorphic RET mutations
would require the action of other mutations.

b. A sib-pair analysis in 49 families with S-HSCR probands.161

This studies shows that only three loci on chromosomes
3p21, 10q11 and 19q12 are both necessary and sufficient to
explain the incidence and sibling recurrence risk in HSCR. A
multiplicative risk across loci with most affected individuals
being heterozygotes at all three loci seems the best genetic
model. Finally, linkage to 9q31 was confirmed in the sib-
pairs with no or hypomorphic RET mutation.

c. A genome-wide association study was conducted in 43
Mennonite family trios and identified a susceptibility locus
on 16q23 in addition to the loci of the two predisposing
genes in this population (RET and EDNRB at 10q11.2 and
13q22, respectively).156

d. Linkage analysis in a multigenerational HSCR family where
the RET gene had been previously excluded, showed linkage
to 4q31-q32.162

The route to the identification of modifier genes is now based
on various approaches. A differential screen for ENS expressed
genes was conducted by a 22 000 probe DNA micro array of
embryonic Ret+/+ and Ret2/2 mice and identified over 300 genes
over expressed in Ret+/+ mice.29 These genes are regarded as
critical for enteric neurogenesis and therefore potential candi-
dates in HSCR. By synteny, some lie at candidate modifier loci
for isolated HSCR. Other approaches undertook by the HSCR
Consortium are microarrays of RNAs from microdissection of
enteric neurons and glia on the one hand and 500 k SNP
genotyping in trios on the other hand.

SYNDROMIC HSCR
HSCR occurs as an isolated trait in 70% of cases. A
chromosomal abnormality is associated in 12% of cases, trisomy
21 being by far the most frequent (.90%). Associated
congenital anomalies are found in 18% of the HSCR patients.
The one occurring at a frequency above that expected by chance
include gastrointestinal malformation, cleft palate, polydactyly,
cardiac septal defects and craniofacial anomalies.13 14 The higher
rate of associated anomalies in familial cases than in isolated
cases (39% vs 21%) strongly suggests syndromes with
Mendelian inheritance.14 Assessment of all HSCR patients by
a trained dysmorphologist should provide a careful evaluation
for recognisable syndromes.

Table 3 Recurrent chromosomal anomalies with HSCR as a feature

Chromosome Key features Number of reports Gene References

Tri 21 Down syndrome, S-HSCR, 5.5 to 10.5 male: female sex ratio 2–10% of HSCR cases ? 5, 11–15

Del 10q11 Mental retardation, L-HSCR 2 cases RET 38, 146

Del 13q22 Mental retardation, growth retardation, dysmorphic features, S-HSCR .10 cases EDNRB 116

Del 2q22-q23 Postnatal growth retardation and microcephaly, mental retardation, epilepsy,
dysmorphic features, HSCR*

.10 cases ZFHX1B 133–135, 147, 148

Del 17q21 .1 case ? 149

Dup 17q21-q23 MCA/MR 4 cases ? 150

Tri 22pter-q11 Cat eye syndrome ? 151

*Both S-HSCR and L-HSCR have been observed.
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Chromosomal anomalies
A large number of chromosomal anomalies have been described
in HSCR patients. Free trisomy 21 (Down syndrome) is by far
the most frequent, involving 2–10% of ascertained HSCR
cases.5 11–15 In these cases, both the unbalanced sex ratio (5.5–
10.5:1 male:female) and the predominance of S-HSCR are even
greater than in isolated HSCR. Over-expression of gene(s) on
chromosome 21 and predisposing to HSCR has been hypothe-
sised and a susceptibility gene mapping to 21q22 postulated in a
Mennonite kindred.114 However, these data were not con-
firmed.156 Hitherto, coding sequence mutations in genes predis-
posing to HSCR, RET, EDNRB and GDNF, respectively, were
found in only three patients with Down syndrome and
HSCR.103 163 However, the common HSCR predisposing RET
hypomorphic allele is over represented in patients with Down
syndrome and HSCR when compared to patients without
HSCR.148

Some chromosomal interstitial deletions reported in combi-
nation with HSCR, have been important for the identification
of HSCR predisposing genes, namely: (1) 10q11.2 interstitial
deletion observed in a few patients with L-HSCR or TCA38 146

leading to the mapping and identification of the first HSCR
predisposing gene (RET); (2) 13q22.1-32.1 interstitial deletion in
patients with S-HSCR leading to the mapping of the second
gene (EDNRB)164–166; (3) 2q22-23 interstitial deletion syndrome
in patients with a multiple congenital anomaly–mental
retardation (MCA-MR) syndrome with HSCR or severe chronic
constipation further delineated as Mowat-Wilson syndrome
(table 3),133 134 147 leading to the identification of the ZFHX1B
gene (previously named SIP1 gene).135

Rarer chromosomal anomalies reported in combination with
HSCR are summarised in table 3. DiGeorge syndrome, mosaic
trisomy 8, XXY chromosomal constitution, partial duplication
of chromosome 2q, tetrasomy 9p, and 20p deletion, have been
observed at least once with HSCR. Interestingly, a patient with
S-HSCR, postnatal growth retardation, mild developmental
delay, dysmorphic facial features and a deletion at 4p12
encompassing the PHOX2B gene has been reported.167

Syndromes and associated anomalies
Both the recognition of known entities and the delineation of
novel ones including HSCR as a feature are of importance for
disease prognosis, accurate genetic counselling and search for
candidate genes. Syndromes reported associated with HSCR are
numerous. Some associations are well characterised with a
penetrance of HSCR ranging from 5% to .80% (table 2). For
rare disorders, whether an association with HSCR observed
once is meaningful or occurred by chance alone is not possible to
decide. These conditions are summarised in table 4. Both
frequent and occasional associations may be of interest for the
identification of susceptibility genes to HSCR.

Syndromes frequently associated with HSCR: neurocristopathies
The NC is a transient and multipotent embryonic structure that
gives rise to neuronal, endocrine and paraendocrine, craniofacial,
conotruncal heart and pigmentary tissues.7 Neurocristopathies
encompass tumours, malformations and single or multifocal
anomalies of tissues mentioned above with various combina-
tions. MEN 2, neuroblastoma (NB) conotroncal heart defects
and Waardenburg syndromes illustrate each of these categories,
and are associated with HSCR.

Multiple endocrine neoplasia type 2 and familial medullary thyroid
carcinoma
Familial medullary thyroid carcinoma (FMTC), MEN type 2A
(MEN 2A) and type 2B (MEN 2B) are cancer predisposition
syndromes with an autosomal dominant mode of inheritance.
MEN 2A is defined by an age-related predisposition to
medullary thyroid carcinoma (MTC, 70% by the age of 70
years), pheochromocytoma (50% of cases) and hyperplasia of
the parathyroid glands (15–35%). In addition to MTC and
pheochromocytoma, individuals with MEN 2B present with
oral neuromas, marfanoid habitus and hyperganglionosis of the
hindgut.208 Germline missense mutations of the RET gene have
been identified in MEN 2A, MEN 2B and FMTC. Both FMTC
and MEN 2A can be associated with HSCR in some
families.47 175–181 Interestingly, these families present a germline
RETmutation of the MEN 2A or FMTC type (see below).47 176–181

This raises the question of whether all individuals with HSCR,
regardless of non-contributive family history, should be
screened for RET exon 10 and 11 mutations to rule out cancer
predisposition (3/160 cases in our series with C609W, C611R
and C620R RET gene mutations, respectively).

Neuroblastoma
Neuroblastoma (NB) is the most frequent solid tumour in
childhood with an incidence of 1/10 000. The tumour can arise
at any site of the sympathetic chain or the adrenal medulla
(both originating from NCC). In some families, tumour
predisposition segregates through generations with incomplete
penetrance.209–211 NB is found associated to HSCR and con-
genital central hypoventilation (CCHS, see below) in various
combinations and, in each combination, heterozygous muta-
tions of the paired-like homeobox 2B gene (PHOX2B) have been
identified.137 212–217 However, germeline PHOX2B mutations
remain rare in sporadic, isolated NB.215 216

Congenital central hypoventilation syndrome (CCHS, MIM 209880).
Initially termed Ondine’s curse, CCHS is a rare, life-threatening
condition characterised by abnormal ventilatory response to
hypoxia and hypercapnia due to failure of autonomic respira-
tory control.218 CCHS is not per se a neurocristopathy due to the
involvement of both the central and peripheral autonomic
nervous system. CCHS patients often present symptoms
resulting from a broader dysfunction of the autonomous
nervous system and predisposition to neural crest cell derived
tumours (5–10% of CCHS cases, neuroblastoma, ganglioblas-
toma, ganglioneuroma).209 219–221 Haddad syndrome (MIM
209880) is defined by the association of HSCR and CCHS and
is found in about 20% of CCHS patients.138 172 173 In these cases,
L-HSCR (including TCA) is the most frequent, and the sex ratio
is almost equal at variance to what is observed in isolated
HSCR.222 PHOX2B is the disease causing gene with de novo
heterozygous mutation in the proband,174 the far most frequent
being in frame duplication leading to polyalanine expan-
sion.223 224 Parents of patient with molecularly proven CCHS
must be tested for accurate genetic counselling as about 10%
carry a somatic mosaic137 and some parents may develop late
onset CHS.225 Finally, genotype/phenotype correlations allow
the detection of patients with a high risk to develop tumours
(and carry a frameshift mutation) and reassurance about
tumour predisposition to those carrying a polyalanine expan-
sion.137
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Waardenburg syndromes (WS) and related pigmentary anomalies
WS, an autosomal dominant condition, is by far the most
frequent condition combining pigmentary anomalies and
sensorineural deafness (1/50 000 live births and 2–5% of all
congenital deafness), resulting from the absence of melanocytes
of the skin and the stria vascularis of the cochlea.226 WS is
clinically and genetically heterogeneous (MIM 193500, MIM
148820, MIM 193510).227 The combination of HSCR with WS
defines the WS4 type (Shah-Waardenburg syndrome, MIM
277580), a genetically heterogeneous condition. Indeed, homo-
zygous mutations of the endothelin pathway118 120 121 168 and
heterozygous SOX10 mutations have been identified in WS4
patients.122 Patients carrying a SOX10 mutation may also
present with CNS involvement including seizures, ataxia, and
demyelinating peripheral and central neuropathies123 228 and
WS2 (Bondurand et al in Am J Hum Genet website).

Related syndromes associating pigmentary anomalies and
HSCR include: (1) Yemenite deaf-blind hypopigmentation
syndrome (MIM 601706), a SOX10 mutation having been
reported in one of these families153; (2) Black Locks-Albinism-
Deafness syndrome (BADS, MIM 227010) with TCA-HSCR in
one case169; (3) aganglionic megacolon associated with familial
piebaldism (MIM 172800)170 171; (4) HSCR and profound
congenital deafness but with no other WS features has also
been reported.229

Other neurocristopathies
Familial dysautonomia syndrome (FDS, Riley-Day syndrome,
MIM 223900) has been reported once in association with HSCR.
Although it could have arisen by chance alone, it is interesting
to note that FDS maps to 9q31 where a susceptibility locus for
HSCR has been identified. Other occasional associations

Table 4 Syndromes associated with HSCR

Syndromes MIM Key features References

Syndromic NCC
disorders

WS4 (Shah-Waardenburg) 277580 Pigmentary anomalies (white forelock, iris hypoplasia, patchy hypopigmentation) 118, 120–122, 168

Yemenite deaf-blind-
hypopigmentation

601706 Hearing loss, eye anomalies (microcornea, coloboma, nystagmus), pigmentary anomalies 153

BADS 227010 Hearing loss, hypopigmentation of the skin and retina 169

Piebaldism 172800 Patchy hypopigmentation of the skin 170, 171

Haddad 209880 Congenital central hypoventilation 172–174

MEN2A Medullary thyroid carcinoma, pheochromocytoma, hyperplasia of the parathyroid 47, 175–181

Riley-Day 223900 Autonomic nervous system anomalies

HSCR mandatory Goldberg-Shprintzen 235730 Mental retardation, polymicrogyria, microcephaly, CF, coloboma, facial dysmorphic
features

182–184

HD with limb anomalies 235740 Polydactyly, unilateral renal agenesis, hypertelorism, deafness 185

235750 Postaxial polydactyly, ventricular septal defect 186

235760 Hypoplasia of distal phalanges and nails, dysmorphic features 187

604211 Preaxial polydactyly, heart defect, laryngeal anomalies 188

306980 Brachydactyly type D 189

BRESHEK Brain abnormalities , Retardation, Ectodermal dysplasia, Skeletal malformation,
Hirschsprung disease, Ear/eye anomalies, Kidney dysplasia

190

Mowat-Wilson 235730 Mental retardation, microcephaly, epilepsy, facial gestalt, hypospadias, renal anomalies,
ACC, CCD

135, 148, 191–193

HSCR
occasionally
associated

Bardet-Biedl syndrome and/or 209900 Pigmentary retinopathy, obesity, hypogenitalism, mild mental retardation, postaxial
polydactyly

194, 195

Kauffman-McKusick 236700 Hydrometrocolpos, postaxial polydactyly, congenital heart defect 196

Smith-Lemli-Opitz 270400 Growth retardation, microcephaly, mental retardation, hypospadias, 2–3 toes syndactyly,
dysmorphic features

197

Cartilage-hair hypoplasia 250250 Shortlimb dwarfism, metaphyseal dysplasia immunodeficiency 198

HSAS/MASA 307000 Hydrocephalus, aqueductal stenosis, spasticity adducted thumbs, ACC, mental retardation 199

HSCR rarely
associated

Fukuyama congenital muscular
dystrophy

253800 Muscular dystrophy, polymicrogyria, hydrocephalus, MR, seizures 200, 201

Clayton-Smith 258840 Dysmorphic features, hypoplastic toes and nails, ichthyosis 202

Kaplan 304100 Agenesis of corpus callosum, adducted thumbs, ptosis, muscle weakness 203

Okamoto 308840 Hydrocephalus, cleft palate corpus callosum agenesia 204

Werner mesomelic dysplasia 188770 205, 206

Pitt-Hopkins 610954 Epileptic encephalopathy, facial dysmorphic features, bouts of hyperventilation,
dysautonomia

141–143

Jeune asphyxing thoracic
dystrophia

208500 207

Miscellaneous
associations

Pallister-Hall (CAVE) 140510

Fryns 229850

Aarskog 100050

Fronto-nasal dysplasia 136760

Osteopetrosis

Goldenhar 164210

Lesch-Nyhan 308000

Rubinstein-Taybi 180849

Toriello-Carey 217980

SEMDJL 271640

Adapted from: Scriver CM et al. The metabolic and molecular bases of inherited diseases. 8th ed. McGraw-Hill, pp 6231-55.
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reported thus far include cleft lip with or without cleft palate,230

neural tube defects (myelomeningocoele)231 and neurofibroma-
tosis type I.210 The significance of these associations is not yet
established.

Other syndromes with HSCR as a frequent feature
Mowat-Wilson syndrome (MIM 235730)
Mowat-Wilson syndrome (MWS) is an MCA-MR condition
first delineated among the heterogeneous group of patients with
HSCR and MR.134 The condition is associated with micro-
cephaly, epilepsy, a facial gestalt and severe mental retardation.
The spectrum of possibly associated malformations is wide and
encompasses, in decreasing frequency order, hypospadias, renal
anomalies, congenital cardiac defect, agenesis/hypoplasia of the
corpus callosum and HSCR.148 193 Heterozygous de novo dele-
tions encompassing the ZFHX1B (zinc finger homeo box 1B)
gene or truncating mutations within the gene are found in over
100 cases.135 191 192 Some rare splicing and missense mutations
have also been reported.148 Loss of function by haploinsuffi-
ciency is the disease causing mechanism in humans. ZFHX1B
acts as a transcriptional repressor of smad protein targets and
has key functions in early embryonic development in several
animal models.94 136 232 A knock-out restricted to NCC precursors
in mice demonstrated a wide range of anomalies in NCC
derivatives.233

Goldberg-Shprintzen syndrome (MIM 609460).
This autosomal recessive MCA-MR syndrome combines HSCR,
moderate mental retardation, microcephaly, polymicrogyria,
facial dysmorphic features (hypertelorism, prominent nose,
synophrys, sparse hair), cleft palate and iris coloboma.182 183

The disease causing gene KIAA1279 has been identified in a
large consanguineous family and encodes a protein of unknown
function.184 GSS is a rare condition within the group of patients
with MR and HSCR. Several reports with variable association of
microcephaly, iris coloboma, cleft palate and mental retarda-
tion, and regarded as possible variants GSS, are unlikely allelic
conditions.234 235

HSCR with limb anomalies
Several rare syndromes with HSCR and distal limb anomalies
(polydactyly or hypoplasia) have been reported. These are: (1)
HSCR with polydactyly, unilateral renal agenesis, hypertelor-
ism and congenital deafness (MIM 235740)185; (2) HSCR,
postaxial polydactyly and ventricular septal defects (MIM
235750)186; (3) HSCR, hypoplasia of the distal phalanges and
nails and mild dysmorphic features (MIM 235760)187; (4) HSCR
with preaxial polydactyly, heart defect and laryngeal anomalies
(MIM 604211)188; (5) HSCR with brachydactyly type D (MIM
306980)189; (6) HSCR with brachydactyly, macrocephaly and
vertebrae anomalies190; (7) BRESHEK syndrome236; and (8)
Werner mesomelic dysplasia.205 206

Bardet-Biedl syndrome (MIM 209900) and McKusick-Kauffman
syndrome (MIM 236700)
Bardet-Biedl syndrome (BBS) is characterised by progressive
pigmentary retinopathy, obesity, hypogenitalism, renal involve-
ment (including cysts, renal cortical loss or reduced ability to
concentrate urine), mild mental retardation and postaxial
polydactyly of the hands and feet. BBS is genetically hetero-
geneous with at least 12 loci and 10 genes identified, all involved
in ciliary function.237 HSCR has been reported in several BBS
cases.194 195 McKusick-Kauffman syndrome (MKKS) is a rare

condition, allelic to BBS and characterised by hydrometrocolpos,
postaxial polydactyly and congenital heart defect. HSCR is
found in 10% of cases.196 Mutations in the MKKS/BBS6 gene,
encoding a chaperonin protein, were identified in some BBS
patients confirming that both conditions are allelic.238 239 Jeune
syndrome, also ascribed to a gene involved in the ciliary
function, has been occasionally associated to HSCR.207

Smith-Lemli-Opitz syndrome (MIM 270400)
Smith-Lemli-Opitz syndrome (SLO) is characterised by pre- and
postnatal growth retardation and microcephaly, severe mental
retardation, facial dysmorphic features, hypospadias and syn-
dactyly between toes 2 and 3. SLO results from cholesterol
metabolic impairment with mutation of the 7-dehydro-choles-
terol reductase gene (DHCR7, chromosome 11q12-q13).240 241

HSCR is observed in a significant number of severe SLO
patients.197

Cartilage-hair hypoplasia syndrome (MIM 250250)
The skeletal dysplasia cartilage-hair hypoplasia syndrome
(CHH), first described in the Old Order Amish community,
combines metaphyseal dysplasia with short limb dwarfism,
fine, sparse and blond hair, transient macrocytic anaemia and
immunodeficiency. HSCR is associated in approximately 10% of
the cases.198 The gene RMRP has been mapped to chromosome
9p13.242 Interestingly, HSCR has been reported in the
Holmgren-Connor syndrome (MIM 211120) which may be
allelic to CHH.
The RET gene plays a pivotal role in both isolated and

syndromic HSCR. Indeed, epistatic interactions with the
common RET hypomorphic allele has been demonstrated for
HSCR predisposition in Down, CCHS and BBS.148 243

Conversely, the role of the RET hypomorphic allele is not
significant in MWS and WS4 due to SOX10 mutation.148 Of
note, a case–control study in a Chinese population identified an
SNP in intron 2 of PHOX2B (IVS2+100) as over represented in
the HSCR group of patients.244

Miscellaneous observations
This can be include; (1) syndromes with myopathy200 201; (2)
syndromes with dermatological findings202; and (3) syndromes
with central nervous system anomalies, among which the
HSAS/MASA spectrum ascribed to mutations in the X-linked
L1CAM gene. Indeed, at least five different mutations in
L1CAM have been identified in patients with hydrocephalus
and HSCR.199 Interestingly, L1cam is an ENS-expressed gene.29

The question of L1CAM being a modifier gene in HSCR has
been raised with no definitive answer given thus far.245 246 Other
rare associations include the finding of HSCR with Fryns,
Aarskog, Jeune asphyxing thoracic dystrophia, Joubert, fronto-
nasal dysplasia, osteopetrosis, Goldenhar, Lesch-Nyhan,
Rubinstein-Taybi, Toriello-Carey, Pallister-Hall, spondylo-epi-
metaphyseal dysplasia with joint laxity (SEMDJL, MIM
271640), persistent mullerian duct syndromes, and asplenia
with cardiovascular anomaly.

Associated anomalies
A wide spectrum of additional isolated anomalies have been
described among HSCR cases, with an incidence varying from
5–30% according to series.10 11 13 247–250 No constant pattern is
observed and these anomalies include distal limb, sensorineural,
skin, central nervous system, genital, kidney and cardiac
malformations. However, cardiac defects, and mostly atrio- or
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ventriculoseptal defects, are found with an incidence of 5% of
HSCR cases, once removed patients with trisomy 21 and HSCR.
Renal dysplasia or agenesis was reported in FMTC251 and found
in 4.4% in a series of 160 HSCR cases and may still be
underestimated (personal data). This is of interest since
homozygous knock-out mice for genes involved in the Ret
signalling pathway present with renal agenesia/dysplasia in
addition to megacolon.82 Genital anomalies including hypospa-
dias are reported in up to 2–3% of HSCR patients.
Gastrointestinal malformations such as Meckel diverticulum,
pyloric stenosis, single umbilical arteria, inguinal hernia or small
bowel atresia are also found.252–254 Finally, facial dysmorphic
features seem extremely frequent when looked for. These data
highlight the importance of a careful assessment by a clinician
trained in dysmorphology for all newborns diagnosed with
HSCR. Skeletal x ray, cardiac and urogenital ultrasound survey
should be systematically performed. The observation of one
additional anomaly to HSCR should prompt chromosomal
studies and/or molecular karyotyping.

The unanswered question of sex-dependent penetrance in HSCR
Expression and penetrance of a RET mutation is variable and
sex-dependent within HSCR families. In large series, the
estimated penetrance is 72% in males and 51% in females.44

Accordingly, the penetrance of the HSCR predisposing T allele
for the HSCR trait is greater in females than in males.75 A
significant parent-of-origin effect at the RET locus, 78% of
shared RET alleles by affected sibs being maternally derived,
could explain the sex difference in HSCR expression. Epigenetic
effects at the RET locus have been hypothesised. Of note, a sex
difference in disease expressivity (that is, length of the
aganglionic segment) of Ret+/2; Ednrbs/s mice has been
observed.255 None of the genome wide scans performed in
HSCR families identified a locus on the X chromosome thus far.
However, a differential screen for ENS expressed genes
performed in mice pointed to several X-linked genes.29 Finally,
the observation of a skewed sex ratio in RET-independent
syndromic HSCR (that is, MWS and WS4) suggests that the sex
bias observed cannot entirely rely on a gender effect at the RET
locus.148

GENETIC COUNSELLING
HSCR is a sex-modified multifactorial congenital malformation
with an overall recurrence risk in sibs of the proband of 4%
(relative risk=200). In isolated HSCR, adequate relative risk
figures will be provided by taking into account the sex and
length of the aganglionic segment in the proband and the gender
of the sibling (2–33%). According to Carter’s paradox, the
highest recurrence risk is for a male sibling of a female proband
with L-HSCR (table 1). According to poor genotype–phenotype
correlation thus far, the benefit of mutation screening for HSCR
patients appears low except for systematic testing of exon 10
and 11 of the RET gene, owing to cancer predisposition of
MEN2A mutations. This, however, is still not routine practice
in most countries.
Many HSCR cases are associated with other congenital

anomalies. In these cases, the long term prognosis is highly
dependent on the severity of the associated anomalies. Several
known syndromes have straight Mendelian inheritance. This
emphasises the importance of careful assessment by a clinician
trained in syndromology of all newborns diagnosed with HSCR.
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17. Nihoul-Fékété C, Ricour C, Martelli H, Lortat Jacob S, Pellerin D. Total colonic
aganglionosis (with or without ileal involvement): a review of 27 cases. J Pediatr
Surg 1986;21:251.

18. Neilson IR, Yazbeck S. Ultrashort Hirschsprung’s disease: myth or reality. J Pediatr
Surg 1990;25:1135–8.

19. Parc R, Berrod JL, Tussiot J, Loygue J. [Megacolon in adults. Apropos of 76 cases].
Ann Gastroenterol Hepatol (Paris) 1984;20:133–41.

20. Emir H, Akman M, Sarimurat N, Kilic N, Erdogan E, Soylet Y. Anorectal manometry
during the neonatal period: its specificity in the diagnosis of Hirschsprung’s disease.
Eur J Pediatr Surg 1999;9:101–3.

21. Lopez Alonso M. [Manometric study in the newborn]. Cir Pediatr 1992;5:66–71.
22. Kurer MH, Lawson JO, Pambakian H. Suction biopsy in Hirschsprung’s disease.

Arch Dis Child 1986;61:83–4.
23. Soave F. Hirschsprung’s disease. Technique and results of Soave’s operation.

Br J Surg 1966;53:1023–7.
24. Newbern WR. Hirschsprung’s disease–the Duhamel modification.

Am J Gastroenterol 1967;47:61–8.
25. Albanese CT, Jennings RW, Smith B, Bratton B, Harrison MR. Perineal one-stage

pull-through for Hirschsprung’s disease. J Pediatr Surg 1999;34:377–80.
26. Langer JC, Durrant AC, de la Torre L, Teitelbaum DH, Minkes RK, Caty MG,

Wildhaber BE, Ortega SJ, Hirose S, Albanese CT. One-stage transanal Soave
pullthrough for Hirschsprung disease: a multicenter experience with 141 children.
Ann Surg 2003;238:569–83; discussion 583–5.

27. El-Sawaf MI, Drongowski RA, Chamberlain JN, Coran AG, Teitelbaum DH. Are the
long-term results of the transanal pull-through equal to those of the transabdominal
pull-through? A comparison of the 2 approaches for Hirschsprung disease. J Pediatr
Surg 2007;42:41–7; discussion 47.

28. Rauch U, Hansgen A, Hagl C, Holland-Cunz S, Schafer KH. Isolation and cultivation
of neuronal precursor cells from the developing human enteric nervous system as a
tool for cell therapy in dysganglionosis. Int J Colorectal Dis 2006;21:554–9.

29. Heanue TA, Pachnis V. Enteric nervous system development and Hirschsprung’s
disease: advances in genetic and stem cell studies. Nat Rev Neurosci 2007;8:466–
79.

30. Hackam DJ, Filler RM, Pearl RH. Enterocolitis after the surgical treatment of
Hirschsprung’s disease: risk factors and financial impact. J Pediatr Surg
1998;33:830–3.

31. Yanchar NL, Soucy P. Long-term outcome after Hirschsprung’s disease: patients’
perspectives. J Pediatr Surg 1999;34:1152–60.

Review

J Med Genet 2008;45:1–14. doi:10.1136/jmg.2007.053959 9

 group.bmj.com on August 4, 2011 - Published by jmg.bmj.comDownloaded from 

http://jmg.bmj.com/
http://group.bmj.com/


32. Moore SW, Albertyn R, Cywes S. Clinical outcome and long-term quality of life
after surgical correction of Hirschsprung’s disease. J Pediatr Surg 1996;31:1496–
502.

33. Jasonni V, Martucciello G. Total colonic aganglionosis. Semin Pediatr Surg
1998;7:174–80.

34. Tsuji H, Spitz L, Kiely EM, Drake DP, Pierro A. Management and long-term follow-up
of infants with total colonic aganglionosis. J Pediatr Surg 1999;34:158–61;
discussion 162.

35. Badner JA, Sieber WK, Garver KL, Chakravarti A. A genetic study of Hirschsprung
disease. Am J Hum Genet 1990;46:568–80.

36. Lyonnet S, Bolino A, Pelet A, Abel L, Nihoul-Fekete C, Briard ML, Mok-Siu V,
Kaariainen H, Martucciello G, Lerone M, et al. A gene for Hirschsprung disease maps
to the proximal long arm of chromosome 10. Nat Genet 1993;4:346–50.

37. Angrist M, Kauffman E, Slaugenhaupt SA, Matise TC, Puffenberger EG, Washington
SS, Lipson A, Cass DT, Reyna T, Weeks DE, et al. A gene for Hirschsprung disease
(megacolon) in the pericentromeric region of human chromosome 10. Nat Genet
1993;4:351–6.

38. Martucciello G, Biocchini M, Dodero P, Cirillo M, Puliti A, Gimelli G. Total colonic
aganglionosis associated with interstitial deletion of the long arm of chromosome
10. Pediatr Surg Int 1992;7:308.

39. Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, Love DR, Mole
SE, Moore JK, Papi L. Germ-line mutations of the RET proto-oncogene in multiple
endocrine neoplasia type 2A. Nature 1993;363:458–60.

40. Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC, Howe JR,
Moley JF, Goodfellow P, Wells SA. Mutations in the RET proto-oncogene are
associated with MEN 2A and FMTC. Hum Mol Genet 1993;2:851–6.

41. Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, Holder S, Nihoul-Fekete
C, Ponder BA, Munnich A. Mutations of the RET proto-oncogene in Hirschsprung’s
disease. Nature 1994;367:378–80.

42. Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, Pasini B, Bocciardi R,
Lerone M, Kaariainen H, et al. Point mutations affecting the tyrosine kinase domain
of the RET proto- oncogene in Hirschsprung’s disease. Nature 1994;367:377–8.

43. Angrist M, Bolk S, Thiel B, Puffenberger EG, Hofstra RM, Buys CH, Cass DT,
Chakravarti A. Mutation analysis of the RET receptor tyrosine kinase in Hirschsprung
disease. Hum Mol Genet 1995;4:821–30.

44. Attie T, Pelet A, Edery P, Eng C, Mulligan LM, Amiel J, Boutrand L, Beldjord C,
Nihoul-Fekete C, Munnich A, et al. Diversity of RET proto-oncogene mutations in
familial and sporadic Hirschsprung disease. Hum Mol Genet 1995;4:1381–6.

45. Seri M, Yin L, Barone V, Bolino A, Celli I, Bocciardi R, Pasini B, Ceccherini I, Lerone
M, Kristoffersson U, Larsson LT, Casasa JM, Cass DT, Abramowicz MJ,
Vanderwinden JM, Kravcenkiene I, Baric I, Silengo M, Martucciello G, Romeo G.
Frequency of RET mutations in long- and short-segment Hirschsprung disease. Hum
Mutat 1997;9:243–9.

46. Hofstra RM, Wu Y, Stulp RP, Elfferich P, Osinga J, Maas SM, Siderius L, Brooks
AS, vd Ende JJ, Heydendael VM, Severijnen RS, Bax KM, Meijers C, Buys CH. RET
and GDNF gene scanning in Hirschsprung patients using two dual denaturing gel
systems. Hum Mutat 2000;15:418–29.

47. Mulligan LM, Eng C, Attie T, Lyonnet S, Marsh DJ, Hyland VJ, Robinson BG, Frilling
A, Verellen-Dumoulin C, Safar A, et al. Diverse phenotypes associated with exon 10
mutations of the RET proto- oncogene. Hum Mol Genet 1994;3:2163–7.

48. Eng C, Smith DP, Mulligan LM, Nagai MA, Healey CS, Ponder MA, Gardner E,
Scheumann GF, Jackson CE, Tunnacliffe A, et al. Point mutation within the tyrosine
kinase domain of the RET proto- oncogene in multiple endocrine neoplasia type 2B
and related sporadic tumours [erratum in Hum Mol Genet 1994;3:686]. Hum Mol
Genet 1994;3:237–41.

49. Hofstra RM, Landsvater RM, Ceccherini I, Stulp R, Stelwagen T, Luo Y, Pasini B,
Hoppener JW, van Amstel HKGR. A mutation in the RET proto-oncogene associated
with multiple endocrine neoplasia type 2B and sporadic medullary thyroid
carcinoma. Nature 1994;367:375–6.

50. Carlson KM, Dou S, Chi D, Scavarda N, Toshima K, Jackson CE, Wells SAJ,
Goodfellow PJ, Donis-Keller H. Single missense mutation in the tyrosine kinase
catalytic domain of the RET protooncogene is associated with multiple endocrine
neoplasia type 2B. Proc Natl Acad Sci U S A 1994;91:1579–83.

51. Plaza Menacho I, Koster R, van der Sloot AM, Quax WJ, Osinga J, van der Sluis T,
Hollema H, Burzynski GM, Gimm O, Buys CH, Eggen BJ, Hofstra RM. RET-familial
medullary thyroid carcinoma mutants Y791F and S891A activate a Src/JAK/STAT3
pathway, independent of glial cell line-derived neurotrophic factor. Cancer Res
2005;65:1729–37.

52. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, Fusco A,
Vecchio G, Matoskova B, Kraus MH. Activation of RET as a dominant transforming
gene by germline mutations of MEN2A and MEN2B. Science 1995;267:381–3.

53. Pasini B, Borrello MG, Greco A, Bongarzone I, Luo Y, Mondellini P, Alberti L,
Miranda C, Arighi E, Bocciardi R, et al. Loss of function effect of RET mutations
causing Hirschsprung disease. Nat Genet 1995;10:35–40.

54. Carlomagno F, De Vita G, Berlingieri MT, de Franciscis V, Melillo RM, Colantuoni V,
Kraus MH, Di Fiore PP, Fusco A, Santoro M. Molecular heterogeneity of RET loss of
function in Hirschsprung’s disease. Embo J 1996;15:2717–25.

55. Iwashita T, Murakami H, Asai N, Takahashi M. Mechanism of ret dysfunction by
Hirschsprung mutations affecting its extracellular domain. Hum Mol Genet
1996;5:1577–80.

56. Pelet A, Geneste O, Edery P, Pasini A, Chappuis S, Atti T, Munnich A, Lenoir G,
Lyonnet S, Billaud M. Various mechanisms cause RET-mediated signaling defects in
Hirschsprung’s disease. J Clin Invest 1998;101:1415–23.

57. Iwashita T, Kurokawa K, Qiao S, Murakami H, Asai N, Kawai K, Hashimoto M,
Watanabe T, Ichihara M, Takahashi M. Functional analysis of RET with Hirschsprung
mutations affecting its kinase domain. Gastroenterology 2001;121:24–33.

58. Manie S, Santoro M, Fusco A, Billaud M. The RET receptor: function in
development and dysfunction in congenital malformation. Trends Genet
2001;17:580–9.

59. Lantieri F, Griseri P, Ceccherini I. Molecular mechanisms of RET-induced
Hirschsprung pathogenesis. Ann Med 2006;38:11–19.

60. Sancandi M, Ceccherini I, Costa M, Fava M, Chen B, Wu Y, Hofstra R, Laurie T,
Griffths M, Burge D, Tam PK. Incidence of RET mutations in patients with
Hirschsprung’s disease. J Pediatr Surg 2000;35:139–42; discussion 142–3.

61. Garcia-Barcelo M, Sham MH, Lee WS, Lui VC, Chen BL, Wong KK, Wong JS, Tam
PK. Highly recurrent RET mutations and novel mutations in genes of the receptor
tyrosine kinase and endothelin receptor B pathways in Chinese patients with
sporadic Hirschsprung disease. Clin Chem 2004;50:93–100.

62. Bolk S, Pelet A, Hofstra RM, Angrist M, Salomon R, Croaker D, Buys CH, Lyonnet S,
Chakravarti A. A human model for multigenic inheritance: phenotypic expression in
Hirschsprung disease requires both the RET gene and a new 9q31 locus. Proc Natl
Acad Sci U S A 2000;97:268–73.

63. Fitze G, Schreiber M, Kuhlisch E, Schackert HK, Roesner D. Association of RET
protooncogene codon 45 polymorphism with Hirschsprung disease. Am J Hum
Genet 1999;65:1469–73.

64. Borrego S, Saez ME, Ruiz A, Gimm O, Lopez-Alonso M, Antinolo G, Eng C. Specific
polymorphisms in the RET proto-oncogene are over-represented in patients with
Hirschsprung disease and may represent loci modifying phenotypic expression.
J Med Genet 1999;36:771–4.

65. Borrego S, Ruiz A, Saez ME, Gimm O, Gao X, Lopez-Alonso M, Hernandez A,
Wright FA, Antinolo G, Eng C. RET genotypes comprising specific haplotypes of
polymorphic variants predispose to isolated Hirschsprung disease. J Med Genet
2000;37:572–8.

66. Garcia-Barcelo M, Sham MH, Lui VC, Chen BL, Ott J, Tam PK. Association study
of PHOX2B as a candidate gene for Hirschsprung’s disease. Gut 2003;52:563–7.

67. Burzynski GM, Nolte IM, Osinga J, Ceccherini I, Twigt B, Maas S, Brooks A,
Verheij J, Plaza Menacho I, Buys CH, Hofstra RM. Localizing a putative mutation as
the major contributor to the development of sporadic Hirschsprung disease to the
RET genomic sequence between the promoter region and exon 2. Eur J Hum Genet
2004;12:604–12.

68. Pelet A, de Pontual L, Clement-Ziza M, Salomon R, Mugnier C, Matsuda F, Lathrop
M, Munnich A, Feingold J, Lyonnet S, Abel L, Amiel J. Homozygosity for a frequent
and weakly penetrant predisposing allele at the RET locus in sporadic Hirschsprung
disease. J Med Genet 2005;42:e18.

69. Borrego S, Fernandez RM, Dziema H, Niess A, Lopez-Alonso M, Antinolo G, Eng C.
Investigation of germline GFRA4 mutations and evaluation of the involvement of
GFRA1, GFRA2, GFRA3, and GFRA4 sequence variants in Hirschsprung disease.
J Med Genet 2003;40:e18.

70. Sancandi M, Griseri P, Pesce B, Patrone G, Puppo F, Lerone M, Martucciello G,
Romeo G, Ravazzolo R, Devoto M, Ceccherini I. Single nucleotide polymorphic alleles
in the 5’ region of the RET proto-oncogene define a risk haplotype in Hirschsprung’s
disease. J Med Genet 2003;40:714–8.

71. Garcia-Barcelo M, Ganster RW, Lui VC, Leon TY, So MT, Lau AM, Fu M, Sham
MH, Knight J, Zannini MS, Sham PC, Tam PK. TTF-1 and RET promoter SNPs:
regulation of RET transcription in Hirschsprung’s disease. Hum Mol Genet
2005;14:191–204.

72. Fernandez RM, Boru G, Pecina A, Jones K, Lopez-Alonso M, Antinolo G, Borrego S,
Eng C. Ancestral RET haplotype associated with Hirschsprung’s disease shows
linkage disequilibrium breakpoint at -1249. J Med Genet 2005;42:322–7.

73. Fitze G, Paditz E, Schlafke M, Kuhlisch E, Roesner D, Schackert HK. Association of
germline mutations and polymorphisms of the RET proto- oncogene with idiopathic
congenital central hypoventilation syndrome in 33 patients. J Med Genet
2003;40:E10.

74. Griseri P, Bachetti T, Puppo F, Lantieri F, Ravazzolo R, Devoto M, Ceccherini I. A
common haplotype at the 5’ end of the RET proto-oncogene, overrepresented in
Hirschsprung patients, is associated with reduced gene expression. Hum Mutat
2005;25:189–95.

75. Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S, Portnoy ME, Cutler
DJ, Green ED, Chakravarti A. A common sex-dependent mutation in a RET enhancer
underlies Hirschsprung disease risk. Nature 2005;434:857–63.

76. Widlund HR, Fisher DE. Microphthalamia-associated transcription factor: a critical
regulator of pigment cell development and survival. Oncogene 2003;22:3035–41.

77. Chattopadhyay P, Pakstis AJ, Mukherjee N, Iyengar S, Odunsi A, Okonofua F,
Bonne-Tamir B, Speed W, Kidd JR, Kidd KK. Global survey of haplotype frequencies
and linkage disequilibrium at the RET locus. Eur J Hum Genet 2003;11:760–9.

78. Griseri P, Sancandi M, Patrone G, Bocciardi R, Hofstra R, Ravazzolo R, Devoto M,
Romeo G, Ceccherini I. A single-nucleotide polymorphic variant of the RET proto-
oncogene is underrepresented in sporadic Hirschsprung disease. Eur J Hum Genet
2000;8:721–4.

79. Griseri P, Pesce B, Patrone G, Osinga J, Puppo F, Sancandi M, Hofstra R, Romeo G,
Ravazzolo R, Devoto M, Ceccherini I. A rare haplotype of the RET proto-oncogene is
a risk-modifying allele in Hirschsprung disease. Am J Hum Genet 2002;71:969–74.

80. Griseri P, Lantieri F, Puppo F, Bachetti T, Di Duca M, Ravazzolo R, Ceccherini I. A
common variant located in the 3’UTR of the RET gene is associated with protection
from Hirschsprung disease. Hum Mutat 2007;28:168–76.

Review

10 J Med Genet 2008;45:1–14. doi:10.1136/jmg.2007.053959

 group.bmj.com on August 4, 2011 - Published by jmg.bmj.comDownloaded from 

http://jmg.bmj.com/
http://group.bmj.com/


81. Ceccherini I, Bocciardi R, Luo Y, Pasini B, Hofstra R, Takahashi M, Romeo G. Exon
structure and flanking intronic sequences of the human RET proto-oncogene.
Biochem Biophys Res Commun 1993;196:1288–95.

82. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in
the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor
Ret. Nature 1994;367:380–3.

83. Costantini F, Shakya R. GDNF/Ret signaling and the development of the kidney.
Bioessays 2006;28:117–27.

84. Clarke JC, Patel SR, Raymond RM Jr, Andrew S, Robinson BG, Dressler GR, Brophy
PD. Regulation of c-Ret in the developing kidney is responsive to Pax2 gene dosage.
Hum Mol Genet 2006;15:3420–8.

85. Cao T, Shannon M, Handel MA, Etkin LD. Mouse ret finger protein (rfp) proto-
oncogene is expressed at specific stages of mouse spermatogenesis. Dev Genet
1996;19:309–20.

86. Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-
Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola
H. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF.
Science 2000;287:1489–93.

87. Jain S, Naughton CK, Yang M, Strickland A, Vij K, Encinas M, Golden J, Gupta A,
Heuckeroth R, Johnson EM Jr, Milbrandt J. Mice expressing a dominant-negative
Ret mutation phenocopy human Hirschsprung disease and delineate a direct role of
Ret in spermatogenesis. Development 2004;131:5503–13.

88. Naughton CK, Jain S, Strickland AM, Gupta A, Milbrandt J. Glial cell-line derived
neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate.
Biol Reprod 2006;74:314–21.

89. Fukuyama S, Kiyono H. Neuroregulator RET initiates Peyer’s-patch tissue genesis.
Immunity 2007;26:393–5.

90. Veiga-Fernandes H, Coles MC, Foster KE, Patel A, Williams A, Natarajan D,
Barlow A, Pachnis V, Kioussis D. Tyrosine kinase receptor RET is a key regulator of
Peyer’s patch organogenesis. Nature 2007;446:547–51.

91. de Graaff E, Srinivas S, Kilkenny C, D’Agati V, Mankoo BS, Costantini F, Pachnis V.
Differential activities of the RET tyrosine kinase receptor isoforms during mammalian
embryogenesis. Genes Dev 2001;15:2433–44.

92. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan
AM, Carver-Moore K, Rosenthal A. Renal and neuronal abnormalities in mice lacking
GDNF. Nature 1996;382:76–9.

93. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis
and the absence of enteric neurons in mice lacking GDNF. Nature 1996;382:70–3.

94. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang
SP, Saarma M, Hoffer BJ, Sariola H, Westphal H. Defects in enteric innervation and
kidney development in mice lacking GDNF. Nature 1996;382:73–6.

95. Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto
P, Smith D, Ponder B, Costantini F, Saarma M, et al. GDNF signalling through the Ret
receptor tyrosine kinase. Nature 1996;381:789–93.

96. Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R,
Louis JC, Hu S, Altrock BW, Fox GM. GDNF-induced activation of the ret protein
tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell
1996;85:1113–24.

97. Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C,
Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A,
Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A.
Characterization of a multicomponent receptor for GDNF. Nature 1996;382:80–3.

98. Rosenthal A. The GDNF protein family: gene ablation studies reveal what they
really do and how. Neuron 1999;22:201–3.

99. Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM,
Milbrandt J. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature
1996;384:467–70.

100. Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, Lampe
PA, Heuckeroth RO, Kotzbauer PT, Simburger KS, Golden JP, Davies JA, Vejsada R,
Kato AC, Hynes M, Sherman D, Nishimura M, Wang LC, Vandlen R, Moffat B, Klein
RD, Poulsen K, Gray C, Garces A, Johnson EM, et al. Persephin, a novel neurotrophic
factor related to GDNF and neurturin. Neuron 1998;20:245–53.

101. Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, Leitner
ML, Araki T, Johnson EM, Milbrandt J. Artemin, a novel member of the GDNF ligand
family, supports peripheral and central neurons and signals through the GFRalpha3-
RET receptor complex. Neuron 1998;21:1291–302.

102. Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A. Germline mutations in
glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease
patient. Nat Genet 1996;14:341–4.

103. Salomon R, Attie T, Pelet A, Bidaud C, Eng C, Amiel J, Sarnacki S, Goulet O, Ricour
C, Nihoul-Fekete C, Munnich A, Lyonnet S. Germline mutations of the RET ligand
GDNF are not sufficient to cause Hirschsprung disease. Nat Genet 1996;14:345–7.

104. Ivanchuk SM, Myers SM, Eng C, Mulligan LM. De novo mutation of GDNF, ligand
for the RET/GDNFR-alpha receptor complex, in Hirschsprung disease. Hum Mol
Genet 1996;5:2023–6.

105. Doray B, Salomon R, Amiel J, Pelet A, Touraine R, Billaud M, Attie T, Bachy B,
Munnich A, Lyonnet S. Mutation of the RET ligand, neurturin, supports multigenic
inheritance in Hirschsprung disease [erratum in Hum Mol Genet 1998;7:1831]. Hum
Mol Genet 1998;7:1449–52.

106. Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips
H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A. GFRalpha1 is an
essential receptor component for GDNF in the developing nervous system and
kidney. Neuron 1998;21:53–62.

107. Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM,
Milbrandt J. GFR alpha1-deficient mice have deficits in the enteric nervous system
and kidneys. Neuron 1998;21:317–24.

108. Angrist M, Jing S, Bolk S, Bentley K, Nallasamy S, Halushka M, Fox GM,
Chakravarti A. Human GFRA1: cloning, mapping, genomic structure, and evaluation
as a candidate gene for Hirschsprung disease susceptibility. Genomics
1998;48:354–62.

109. Myers SM, Salomon R, Goessling A, Pelet A, Eng C, von Deimling A, Lyonnet S,
Mulligan LM. Investigation of germline GFR alpha-1 mutations in Hirschsprung
disease. J Med Genet 1999;36:217–20.

110. Bordeaux MC, Forcet C, Granger L, Corset V, Bidaud C, Billaud M, Bredesen DE,
Edery P, Mehlen P. The RET proto-oncogene induces apoptosis: a novel mechanism
for Hirschsprung disease. Embo J 2000;19:4056–63.

111. Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T. The
human endothelin family: three structurally and pharmacologically distinct
isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A
1989;86:2863–7.

112. Sakurai T, Yanagisawa M, Masaki T. Molecular characterization of endothelin
receptors. Trends Pharmacol Sci 1992;13:103–8.

113. Cohen IT, Gadd MA. Hirschsprung’s disease in a kindred: a possible clue to the
genetics of the disease. J Pediatr Surg 1982;17:632–4.

114. Puffenberger EG, Kauffman ER, Bolk S, Matise TC, Washington SS, Angrist M,
Weissenbach J, Garver KL, Mascari M, Ladda R, et al. Identity-by-descent and
association mapping of a recessive gene for Hirschsprung disease on human
chromosome 13q22. Hum Mol Genet 1994;3:1217–25.

115. Van Camp G, Van Thienen MN, Handig I, Van Roy B, Rao VS, Milunsky A, Read AP,
Baldwin CT, Farrer LA, Bonduelle M, et al. Chromosome 13q deletion with
Waardenburg syndrome: further evidence for a gene involved in neural crest
function on 13q. J Med Genet 1995;32:531–6.

116. Shanske A, Ferreira JC, Leonard JC, Fuller P, Marion RW. Hirschsprung disease in
an infant with a contiguous gene syndrome of chromosome 13. Am J Med Genet
2001;102:231–6.

117. Hosoda K, Hammer RE, Richardson JA, Baynash AG, Cheung JC, Giaid A,
Yanagisawa M. Targeted and natural (piebald-lethal) mutations of endothelin-B
receptor gene produce megacolon associated with spotted coat color in mice. Cell
1994;79:1267–76.

118. Puffenberger EG, Hosoda K, Washington SS, Nakao K, deWit D, Yanagisawa M,
Chakravart A. A missense mutation of the endothelin-B receptor gene in multigenic
Hirschsprung’s disease. Cell 1994;79:1257–66.

119. Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE,
Yanagisawa M. Interaction of endothelin-3 with endothelin-B receptor is essential
for development of epidermal melanocytes and enteric neurons. Cell 1994;79:1277–
85.

120. Hofstra RM, Osinga J, Tan-Sindhunata G, Wu Y, Kamsteeg EJ, Stulp RP, van
Ravenswaaij-Arts C, Majoor-Krakauer D, Angrist M, Chakravarti A, Meijers C, Buys
CH. A homozygous mutation in the endothelin-3 gene associated with a combined
Waardenburg type 2 and Hirschsprung phenotype (Shah- Waardenburg syndrome).
Nat Genet 1996;12:445–7.

121. Edery P, Attie T, Amiel J, Pelet A, Eng C, Hofstra RM, Martelli H, Bidaud C,
Munnich A, Lyonnet S. Mutation of the endothelin-3 gene in the Waardenburg-
Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet 1996;12:442–4.

122. Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu MO, Puliti A, Herbarth B,
Hermans-Borgmeyer I, Legius E, Matthijs G, Amiel J, Lyonnet S, Ceccherini I, Romeo
G, Smith JC, Read AP, Wegner M, Goossens M. SOX10 mutations in patients with
Waardenburg-Hirschsprung disease. Nat Genet 1998;18:171–3.

123. Touraine RL, Attie-Bitach T, Manceau E, Korsch E, Sarda P, Pingault V, Encha-
Razavi F, Pelet A, Auge J, Nivelon-Chevallier A, Holschneider AM, Munnes M,
Doerfler W, Goossens M, Munnich A, Vekemans M, Lyonnet S. Neurological
phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating
mutations and expression in developing brain. Am J Hum Genet 2000;66:1496–503.

124. Southard-Smith EM, Angrist M, Ellison JS, Agarwala R, Baxevanis AD, Chakravarti
A, Pavan WJ. The Sox10(Dom) mouse: modeling the genetic variation of
Waardenburg- Shah (WS4) syndrome. Genome Res 1999;9:215–25.

125. Herbarth B, Pingault V, Bondurand N, Kuhlbrodt K, Hermans-Borgmeyer I, Puliti A,
Lemort N, Goossens M, Wegner M. Mutation of the Sry-related Sox10 gene in
Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl
Acad Sci U S A 1998;95:5161–5.

126. Chakravarti A. Endothelin receptor-mediated signaling in Hirschsprung disease.
Hum Mol Genet 1996;5:303–7.

127. Amiel J, Attie T, Jan D, Pelet A, Edery P, Bidaud C, Lacombe D, Tam P, Simeoni J,
Flori E, Nihoul-Fekete C, Munnich A, Lyonnet S. Heterozygous endothelin receptor B
(EDNRB) mutations in isolated Hirschsprung disease. Hum Mol Genet 1996;5:355–
7.

128. Kusafuka T, Wang Y, Puri P. Novel mutations of the endothelin-B receptor gene in
isolated patients with Hirschsprung’s disease. Hum Mol Genet 1996;5:347–9.

129. Auricchio A, Casari G, Staiano A, Ballabio A. Endothelin-B receptor mutations in
patients with isolated Hirschsprung disease from a non-inbred population. Hum Mol
Genet 1996;5:351–4.

130. Bidaud C, Salomon R, Van Camp G, Pelet A, Attie T, Eng C, Bonduelle M, Amiel J,
Nihoul-Fekete C, Willems PJ, Munnich A, Lyonnet S. Endothelin-3 gene mutations in
isolated and syndromic Hirschsprung disease. Eur J Hum Genet 1997;5:247–51.

131. Hofstra RM, Valdenaire O, Arch E, Osinga J, Kroes H, Loffler BM, Hamosh A,
Meijers C, Buys CH. A loss-of-function mutation in the endothelin-converting enzyme

Review

J Med Genet 2008;45:1–14. doi:10.1136/jmg.2007.053959 11

 group.bmj.com on August 4, 2011 - Published by jmg.bmj.comDownloaded from 

http://jmg.bmj.com/
http://group.bmj.com/


1 (ECE- 1) associated with Hirschsprung disease, cardiac defects, and autonomic
dysfunction. Am J Hum Genet 1999;64:304–8.

132. Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier
DE, de Wit D, Emoto N, Hammer RE. Dual genetic pathways of endothelin-mediated
intercellular signaling revealed by targeted disruption of endothelin converting
enzyme-1 gene. Development 1998;125:825–36.

133. Lurie IW, Supovitz KR, Rosenblum-Vos LS, Wulfsberg EA. Phenotypic variability of
del(2) (q22-q23): report of a case with a review of the literature. Genet Couns
1994;5:11–4.

134. Mowat DR, Croaker GD, Cass DT, Kerr BA, Chaitow J, Ades LC, Chia NL, Wilson
MJ. Hirschsprung disease, microcephaly, mental retardation, and characteristic
facial features: delineation of a new syndrome and identification of a locus at
chromosome 2q22-q23. J Med Genet 1998;35:617–23.

135. Wakamatsu N, Yamada Y, Yamada K, Ono T, Nomura N, Taniguchi H, Kitoh H,
Mutoh N, Yamanaka T, Mushiake K, Kato K, Sonta S, Nagaya M. Mutations in SIP1,
encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat
Genet 2001;27:369–70.

136. Van de Putte T, Maruhashi M, Francis A, Nelles L, Kondoh H, Huylebroeck D,
Higashi Y. Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-
1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung
disease-mental retardation syndrome. Am J Hum Genet 2003;72:465–70.

137. Trochet D, O’Brien LM, Gozal D, Trang H, Nordenskjold A, Laudier B, Svensson PJ,
Uhrig S, Cole T, Munnich A, Gaultier C, Lyonnet S, Amiel J. PHOX2B genotype
allows for prediction of tumor risk in congenital central hypoventilation syndrome.
Am J Hum Genet 2005;76:421–6.

138. Trang H, Dehan M, Beaufils F, Zaccaria I, Amiel J, Gaultier C. The French Congenital
Central Hypoventilation Syndrome Registry: general data, phenotype, and genotype.
Chest 2005;127:72–9.

139. Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF. The homeobox gene Phox2b is
essential for the development of autonomic neural crest derivatives. Nature
1999;399:366–70.

140. Dauger S, Pattyn A, Lofaso F, Gaultier C, Goridis C, Gallego J, Brunet JF. Phox2b
controls the development of peripheral chemoreceptors and afferent visceral
pathways. Development 2003;130:6635–42.

141. Peippo MM, Simola KO, Valanne LK, Larsen AT, Kahkonen M, Auranen MP,
Ignatius J. Pitt-Hopkins syndrome in two patients and further definition of the
phenotype. Clin Dysmorphol 2006;15:47–54.

142. Amiel J, Rio M, de Pontual L, Redon R, Malan V, Boddaert N, Plouin P, Carter NP,
Lyonnet S, Munnich A, Colleaux L. Mutations in TCF4, encoding a class I basic helix-
loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe
epileptic encephalopathy associated with autonomic dysfunction. Am J Hum Genet
2007;80:988–93.

143. Zweier C, Peippo MM, Hoyer J, Sousa S, Bottani A, Clayton-Smith J, Reardon W,
Saraiva J, Cabral A, Gohring I, Devriendt K, de Ravel T, Bijlsma EK, Hennekam RC,
Orrico A, Cohen M, Dreweke A, Reis A, Nurnberg P, Rauch A. Haploinsufficiency of
TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-
Hopkins syndrome). Am J Hum Genet 2007;80:994–1001.

144. Wang G, Zhang SH, Lin HJ, Tong EC, Huang YH, Huang GT, Zhuang FT.
Nonoperative treatment of Hirschsprung’s disease: a new approach. J Pediatr Surg
1987;22:439–42.

145. Bergqvist I, Eriksson M, Saarikettu J, Eriksson B, Corneliussen B, Grundstrom T,
Holmberg D. The basic helix-loop-helix transcription factor E2-2 is involved in T
lymphocyte development. Eur J Immunol 2000;30:2857–63.

146. Fewtrell MS, Tam PK, Thomson AH, Fitchett M, Currie J, Huson SM, Mulligan LM.
Hirschsprung’s disease associated with a deletion of chromosome 10 (q11.2q21.2):
a further link with the neurocristopathies? J Med Genet 1994;31:325–7.

147. McMilin KD, Reiss JA, Brown MG, Black MH, Buckmaster DA, Durum CT, Gunter
KA, Lawce HJ, Berry TL, Lamb OA, Olson CL, Weeks FF, Yoshitomi MJ, Jacky PB,
Olson SB, Magenis RE. Clinical outcomes of four patients with microdeletion in the
long arm of chromosome 2. Am J Med Genet 1998;78:36–43.

148. de Pontual L, Pelet A, Clement-Ziza M, Trochet D, Antonarakis SE, Attie-Bitach T,
Beales PL, Blouin JL, Dastot-Le Moal F, Dollfus H, Goossens M, Katsanis N, Touraine
R, Feingold J, Munnich A, Lyonnet S, Amiel J. Epistatic interactions with a common
hypomorphic RET allele in syndromic Hirschsprung disease. Hum Mutat
2007;28:790–796.

149. Brewer C, Holloway S, Zawalnyski P, Schinzel A, FitzPatrick D. A chromosomal
deletion map of human malformations. Am J Hum Genet 1998;63:1153–9.

150. Brewer C, Holloway S, Zawalnyski P, Schinzel A, FitzPatrick D. A chromosomal
duplication map of malformations: regions of suspected haplo- and triplolethality–
and tolerance of segmental aneuploidy–in humans. Am J Hum Genet
1999;64:1702–8.

151. Mahboubi S, Templeton JM Jr. Association of Hirschsprung’s disease and
imperforate anus in a patient with ‘‘cat-eye’’ syndrome. A report of one case and
review of the literature. Pediatr Radiol 1984;14:441–2.

152. Lane PW, Liu HM. Association of megacolon with a new dominant spotting gene
(Dom) in the mouse. J Hered 1984;75:435–9.

153. Bondurand N, Kuhlbrodt K, Pingault V, Enderich J, Sajus M, Tommerup N, Warburg
M, Hennekam RC, Read AP, Wegner M, Goossens M. A molecular analysis of the
yemenite deaf-blind hypopigmentation syndrome: SOX10 dysfunction causes
different neurocristopathies. Hum Mol Genet 1999;8:1785–9.

154. Inoue K, Khajavi M, Ohyama T, Hirabayashi S, Wilson J, Reggin JD, Mancias P,
Butler IJ, Wilkinson MF, Wegner M, Lupski JR. Molecular mechanism for distinct

neurological phenotypes conveyed by allelic truncating mutations. Nat Genet
2004;36:361–9.

155. Auricchio A, Griseri P, Carpentieri ML, Betsos N, Staiano A, Tozzi A, Priolo M,
Thompson H, Bocciardi R, Romeo G, Ballabio A, Ceccherini I. Double heterozygosity
for a RET substitution interfering with splicing and an EDNRB missense mutation in
Hirschsprung disease. Am J Hum Genet 1999;64:1216–21.

156. Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N, Chakravarti
A. Genome-wide association study in Mennonites identifies multiple genes for
oligogenic Hirschsprung disease. Am J Hum Genet 2002;71:193.

157. Potterf SB, Furumura M, Dunn KJ, Arnheiter H, Pavan WJ. Transcription factor
hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and
PAX3. Hum Genet 2000;107:1–6.

158. Southard-Smith EM, Kos L, Pavan WJ. Sox10 mutation disrupts neural crest
development in Dom Hirschsprung mouse model. Nat Genet 1998;18:60–4.

159. Stanchina L, Baral V, Robert F, Pingault V, Lemort N, Pachnis V, Goossens M,
Bondurand N. Interactions between Sox10, Edn3 and Ednrb during enteric nervous
system and melanocyte development. Dev Biol 2006;295:232–49.

160. Owens SE, Broman KW, Wiltshire T, Elmore JB, Bradley KM, Smith JR, Southard-
Smith EM. Genome-wide linkage identifies novel modifier loci of aganglionosis in the
Sox10Dom model of Hirschsprung disease. Hum Mol Genet 2005;14:1549–58.

161. Gabriel SB, Salomon R, Pelet A, Angrist M, Amiel J, Fornage M, Attie-Bitach T,
Olson JM, Hofstra R, Buys C, Steffann J, Munnich A, Lyonnet S, Chakravarti A.
Segregation at three loci explains familial and population risk in Hirschsprung
disease. Nat Genet 2002;31:89–93.

162. Brooks AS, Leegwater PA, Burzynski GM, Willems PJ, de Graaf B, van Langen I,
Heutink P, Oostra BA, Hofstra RM, Bertoli-Avella AM. A novel susceptibility locus for
Hirschsprung’s disease maps to 4q31.3-q32.3. J Med Genet 2006;43:e35.

163. Sakai T, Wakizaka A, Nirasawa Y, Ito Y. Point nucleotidic changes in both the RET
proto-oncogene and the endothelin-B receptor gene in a Hirschsprung disease
patient associated with Down syndrome. Tohoku J Exp Med 1999;187:43–7.

164. Sparkes RS, Sparkes MC, Kalina RE, Pagon RA, Salk DJ, Disteche CM. Separation
of retinoblastoma and esterase D loci in a patient with sporadic retinoblastoma and
del(13)(q14.1q22.3). Hum Genet 1984;68:258–9.

165. Lamont MA, Fitchett M, Dennis NR. Interstitial deletion of distal 13q associated
with Hirschsprung’s disease. J Med Genet 1989;26:100–4.

166. Bottani A, Xie YG, Binkert F, Schinzel A. A case of Hirschsprung disease with a
chromosome 13 microdeletion, del(13)(q32.3q33.2): potential mapping of one
disease locus. Hum Genet 1991;87:748–50.

167. Benailly H, Lapierre J, Laudier B, Amiel J, Attie T, De Blois M, Vekemans M,
Romana S. PMX2B, a new candidate gene for Hirschsprung’s disease. Clin Genet
2003;64:204–9.

168. Attie T, Till M, Pelet A, Amiel J, Edery P, Boutrand L, Munnich A, Lyonnet S.
Mutation of the endothelin-receptor B gene in Waardenburg-Hirschsprung disease.
Hum Mol Genet 1995;4:2407–9.

169. Gross A, Kunze J, Maier RF, Stoltenburg-Didinger G, Grimmer I, Obladen M.
Autosomal-recessive neural crest syndrome with albinism, black lock, cell migration
disorder of the neurocytes of the gut, and deafness: ABCD syndrome. Am J Med
Genet 1995;56:322–6.

170. Mahakrishnan A, Srinivasan MS. Piebaldness with Hirschsprung’s disease. Arch
Dermatol 1980;116:1102.

171. Kaplan P, de Chaderevian JP. Piebaldism-Waardenburg syndrome: histopathologic
evidence for a neural crest syndrome. Am J Med Genet 1988;31:679–88.

172. Haddad GG, Mazza NM, Defendini R, Blanc WA, Driscoll JM, Epstein MA, Epstein
RA, Mellins RB. Congenital failure of automatic control of ventilation, gastrointestinal
motility and heart rate. Medicine (Baltimore) 1978;57:517–26.

173. Verloes A, Elmer C, Lacombe D, Heinrichs C, Rebuffat E, Demarquez JL, Moncla A,
Adam E. Ondine-Hirschsprung syndrome (Haddad syndrome). Further delineation in
two cases and review of the literature. Eur J Pediatr 1993;152:75–7.

174. Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L, Gener B, Trochet D,
Etchevers H, Ray P, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S.
Polyalanine expansion and frameshift mutations of the paired-like homeobox gene
PHOX2B in congenital central hypoventilation syndrome. Nat Genet 2003;33:459–
61.

175. Verdy M, Weber AM, Roy CC, Morin CL, Cadotte M, Brochu P. Hirschsprung’s
disease in a family with multiple endocrine neoplasia type 2. J Pediatr Gastroenterol
Nutr 1982;1:603–7.

176. Borst MJ, VanCamp JM, Peacock ML, Decker RA. Mutational analysis of multiple
endocrine neoplasia type 2A associated with Hirschsprung’s disease. Surgery
1995;117:386–91.

177. Caron P, Attie T, David D, Amiel J, Brousset F, Roger P, Munnich A, Lyonnet S.
C618R mutation in exon 10 of the RET proto-oncogene in a kindred with multiple
endocrine neoplasia type 2A and Hirschsprung’s disease. J Clin Endocrinol Metab
1996;81:2731–3.

178. Peretz H, Luboshitsky R, Baron E, Biton A, Gershoni R, Usher S, Grynberg E,
Yakobson E, Graff E, Lapidot M. Cys 618 Arg mutation in the RET proto-oncogene
associated with familial medullary thyroid carcinoma and maternally transmitted
Hirschsprung’s disease suggesting a role for imprinting. Hum Mutat 1997;10:155–9.

179. Decker RA, Peacock ML, Watson P. Hirschsprung disease in MEN 2A: increased
spectrum of RET exon 10 genotypes and strong genotype-phenotype correlation.
Hum Mol Genet 1998;7:129–34.

180. Romeo G, Ceccherini I, Celli J, Priolo M, Betsos N, Bonardi G, Seri M, Yin L, Lerone
M, Jasonni V, Martucciello G. Association of multiple endocrine neoplasia type 2
and Hirschsprung disease. J Intern Med 1998;243:515–20.

Review

12 J Med Genet 2008;45:1–14. doi:10.1136/jmg.2007.053959

 group.bmj.com on August 4, 2011 - Published by jmg.bmj.comDownloaded from 

http://jmg.bmj.com/
http://group.bmj.com/


181. Borrego S, Eng C, Sanchez B, Saez ME, Navarro E, Antinolo G. Molecular analysis
of the ret and GDNF genes in a family with multiple endocrine neoplasia type 2A and
Hirschsprung disease. J Clin Endocrinol Metab 1998;83:3361–4.

182. Goldberg RB, Shprintzen RJ. Hirschsprung megacolon and cleft palate in two sibs.
J Craniofac Genet Dev Biol 1981;1:185–9.

183. Brooks AS, Breuning MH, Osinga J, vd Smagt JJ, Catsman CE, Buys CH, Meijers
C, Hofstra RM. A consanguineous family with Hirschsprung disease, microcephaly,
and mental retardation (Goldberg-Shprintzen syndrome). J Med Genet
1999;36:485–9.

184. Brooks AS, Bertoli-Avella AM, Burzynski GM, Breedveld GJ, Osinga J, Boven LG,
Hurst JA, Mancini GM, Lequin MH, de Coo RF, Matera I, de Graaff E, Meijers C,
Willems PJ, Tibboel D, Oostra BA, Hofstra RM. Homozygous nonsense mutations in
KIAA1279 are associated with malformations of the central and enteric nervous
systems. Am J Hum Genet 2005;77:120–6.

185. Santos H, Mateus J, Leal MJ. Hirschsprung disease associated with polydactyly,
unilateral renal agenesis, hypertelorism, and congenital deafness: a new autosomal
recessive syndrome. J Med Genet 1988;25:204–5.

186. Laurence KM, Prosser R, Rocker I, Pearson JF, Richard C. Hirschsprung’s disease
associated with congenital heart malformation, broad big toes, and ulnar polydactyly
in sibs: a case for fetoscopy. J Med Genet 1975;12:334–8.

187. al-Gazali LI, Donnai D, Mueller RF. Hirschsprung’s disease, hypoplastic nails, and
minor dysmorphic features: a distinct autosomal recessive syndrome? J Med Genet
1988;25:758–61.

188. Huang T, Elias ER, Mulliken JB, Kirse DJ, Holmes LB. A new syndrome: Heart
defect, laryngeal anomalies, preaxial polydactyly, and colonic aganglionosis in sibs.
Genet Med 1999;1:104.

189. Reynolds JF, Barber JC, Alford BA, Chandler JG, Kelly TE. Familial Hirschsprung’s
disease and type D brachydactyly: a report of four affected males in two
generations. Pediatrics 1983;71:246–9.

190. Toriello HV, Komar K, Lawrence C, Higgins JV, Waterman DF. Macrocephaly,
Hirschsprung disease, brachydactyly, vertebral defects, and other minor anomalies.
Dysmorphology and Clinical Genetics 1988;1:155–7.

191. Cacheux V, Dastot-Le Moal F, Kaariainen H, Bondurand N, Rintala R, Boissier B,
Wilson M, Mowat D, Goossens M. Loss-of-function mutations in SIP1 Smad
interacting protein 1 result in a syndromic Hirschsprung disease. Hum Mol Genet
2001;10:1503–10.

192. Amiel J, Espinosa-Parrilla Y, Steffann J, Gosset P, Pelet A, Prieur M, Boute O,
Choiset A, Lacombe D, Philip N, Le Merrer M, Tanaka H, Till M, Touraine R, Toutain
A, Vekemans M, Munnich A, Lyonnet S. Large-scale deletions and SMADIP1
truncating mutations in syndromic Hirschsprung disease with involvement of midline
structures. Am J Hum Genet 2001;69:1370–7.

193. Zweier C, Thiel CT, Dufke A, Crow YJ, Meinecke P, Suri M, Ala-Mello S, Beemer F,
Bernasconi S, Bianchi P, Bier A, Devriendt K, Dimitrov B, Firth H, Gallagher RC,
Garavelli L, Gillessen-Kaesbach G, Hudgins L, Kaariainen H, Karstens S, Krantz I,
Mannhardt A, Medne L, Mucke J, Kibaek M, Krogh LN, Peippo M, Rittinger O,
Schulz S, Schelley SL, Temple IK, Dennis NR, Van der Knaap MS, Wheeler P,
Yerushalmi B, Zenker M, Seidel H, Lachmeijer A, Prescott T, Kraus C, Lowry RB,
Rauch A. Clinical and mutational spectrum of Mowat-Wilson syndrome. Eur J Med
Genet 2005;48:97–111.

194. Radetti G, Frick R, Pasquino B, Mengarda G, Savage MO. Hypothalamic-pituitary
dysfunction and Hirschsprung’s disease in the Bardet-Biedl syndrome. Helv Paediatr
Acta 1988;43:249–52.

195. Lorda-Sanchez I, Ayuso C, Ibanez A. Situs inversus and Hirschsprung disease: two
uncommon manifestations in Bardet-Biedl syndrome. Am J Med Genet 2000;90:80–1.

196. Davenport M, Taitz LS, Dickson JA. The Kaufman-McKusick syndrome: another
association. J Pediatr Surg 1989;24:1192–4.

197. Patterson K, Toomey KE, Chandra RS. Hirschsprung disease in a 46,XY phenotypic
infant girl with Smith-Lemli-Opitz syndrome. J Pediatr 1983;103:425–7.

198. Makitie O. [Cartilage-hair hypoplasia–a Finnish growth disorder]. Duodecim
1993;109:1638–46.

199. Okamoto N, Del Maestro R, Valero R, Monros E, Poo P, Kanemura Y, Yamasaki M.
Hydrocephalus and Hirschsprung’s disease with a mutation of L1CAM. J Hum Genet
2004;49:334–7.

200. Mandel H, Brik R, Ludatscher R, Braun J, Berant M. Congenital muscular dystrophy
with neurological abnormalities: association with Hirschsprung disease. Am J Med
Genet 1993;47:37–40.

201. Kim JJ, Armstrong DD, Fishman MA. Multicore myopathy, microcephaly,
aganglionosis, and short stature. J Child Neurol 1994;9:275–7.

202. Mallory SB, Haynie LS, Williams ML, Hall W. Ichthyosis, deafness, and
Hirschsprung’s disease. Pediatr Dermatol 1989;6:24–7.

203. Kaplan P. X linked recessive inheritance of agenesis of the corpus callosum. J Med
Genet 1983;20:122–4.

204. Okamoto N, Wada Y, Goto M. Hydrocephalus and Hirschsprung’s disease in a
patient with a mutation of L1CAM. J Med Genet 1997;34:670–1.

205. Hall CM. Werner’s mesomelic dysplasia with ventricular septal defect and
Hirschsprung’s disease. Pediatr Radiol 1981;10:247–9.

206. Goldenberg A, Milh M, de Lagausie P, Mesnage R, Benarif F, de Blois MC,
Munnich A, Lyonnet S, Cormier-Daire V. Werner mesomelic dysplasia with
Hirschsprung disease. Am J Med Genet A 2003;123:186–9.

207. Aurora P, Wallis CE. Jeune syndrome (asphyxiating thoracic dystrophy) associated
with Hirschsprung disease. Clin Dysmorphol 1999;8:259–63.

208. Hansford JR, Mulligan LM. Multiple endocrine neoplasia type 2 and RET: from
neoplasia to neurogenesis. J Med Genet 2000;37:817–27.

209. Chatten J, Voorhess ML. Familial neuroblastoma. Report of a kindred with multiple
disorders, including neuroblastomas in four siblings. N Engl J Med 1967;277:1230–
6.

210. Clausen N, Andersson P, Tommerup N. Familial occurrence of neuroblastoma, von
Recklinghausen’s neurofibromatosis, Hirschsprung’s agangliosis and jaw-winking
syndrome. Acta Paediatr Scand 1989;78:736–41.

211. Knudson AG Jr, Meadows AT. Developmental genetics of neuroblastoma. J Natl
Cancer Inst 1976;57:675–82.

212. Rohrer T, Trachsel D, Engelcke G, Hammer J. Congenital central hypoventilation
syndrome associated with Hirschsprung’s disease and neuroblastoma: case of
multiple neurocristopathies. Pediatr Pulmonol 2002;33:71–6.

213. Trochet D, Bourdeaut F, Janoueix-Lerosey I, Deville A, de Pontual L,
Schleiermacher G, Coze C, Philip N, Frebourg T, Munnich A, Lyonnet S, Delattre O,
Amiel J. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in
neuroblastoma. Am J Hum Genet 2004;74:761–4.

214. Mosse YP, Laudenslager M, Khazi D, Carlisle AJ, Winter CL, Rappaport E, Maris
JM. Germline PHOX2B mutation in hereditary neuroblastoma. Am J Hum Genet
2004;75:727–30.

215. van Limpt V, Schramm A, van Lakeman A, Sluis P, Chan A, van Noesel M, Baas F,
Caron H, Eggert A, Versteeg R. The Phox2B homeobox gene is mutated in sporadic
neuroblastomas. Oncogene 2004;23:9280–8.

216. Perri P, Bachetti T, Longo L, Matera I, Seri M, Tonini GP, Ceccherini I. PHOX2B
mutations and genetic predisposition to neuroblastoma. Oncogene 2005;24:3050–3.

217. McConville C, Reid S, Baskcomb L, Douglas J, Rahman N. PHOX2B analysis in
non-syndromic neuroblastoma cases shows novel mutations and genotype-
phenotype associations. Am J Med Genet A 2006;140:1297–301.

218. Gozal D. Congenital central hypoventilation syndrome: an update. Pediatr Pulmonol
1998;26:273–82.

219. Roshkow JE, Haller JO, Berdon WE, Sane SM. Hirschsprung’s disease, Ondine’s
curse, and neuroblastoma– manifestations of neurocristopathy. Pediatr Radiol
1988;19:45–9.

220. Levard G, Boige N, Vitoux C, Aigrain Y, Boureau M, Navarro J. [Neurocristopathy.
The association of Hirschsprung’s disease-ganglioneuroma with autonomic nervous
system dysfunction in 2 children]. Arch Fr Pediatr 1989;46:595–7.

221. Weese-Mayer DE, Silvestri JM, Marazita ML, Hoo JJ. Congenital central
hypoventilation syndrome: inheritance and relation to sudden infant death syndrome.
Am J Med Genet 1993;47:360–7.

222. Croaker GD, Shi E, Simpson E, Cartmill T, Cass DT. Congenital central
hypoventilation syndrome and Hirschsprung’s disease. Arch Dis Child 1998;78:316–
22.

223. Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Silvestri JM, Curran ME,
Marazita ML. Idiopathic congenital central hypoventilation syndrome: analysis of
genes pertinent to early autonomic nervous system embryologic development and
identification of mutations in PHOX2b. Am J Med Genet 2003;123A:267–78.

224. Matera I, Bachetti T, Puppo F, Di Duca M, Morandi F, Casiraghi GM, Cilio MR,
Hennekam R, Hofstra R, Schober JG, Ravazzolo R, Ottonello G, Ceccherini I. PHOX2B
mutations and polyalanine expansions correlate with the severity of the respiratory
phenotype and associated symptoms in both congenital and late onset Central
Hypoventilation syndrome. J Med Genet 2004;41:373–80.

225. Weese-Mayer DE, Berry-Kravis EM, Zhou L. Adult identified with congenital
central hypoventilation syndrome–mutation in PHOX2b gene and late-onset CHS.
Am J Respir Crit Care Med 2005;171:88.

226. Waardenburg PJ. A new syndrome combining developmental anomalies of the
eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair
and with congenital deafness. Am J Hum Genet 1951;3:195–253.

227. Hageman MJ, Delleman JW. Heterogeneity in Waardenburg syndrome. Am J Hum
Genet 1977;29:468–85.

228. Jacobs JM, Wilson J. An unusual demyelinating neuropathy in a patient with
Waardenburg’s syndrome. Acta Neuropathol (Berl) 1992;83:670–4.

229. Weinberg AG, Currarino G, Besserman AM. Hirschsprung’s disease and congenital
deafness. Familial assocation. Hum Genet 1977;38:157–61.

230. Brunoni D, Joffe R, Farah LM, Cunha AJ. Syndrome identification case report 92:
Hirschsprung megacolon, cleft lip and palate, mental retardation, and minor
congenital malformations. J Clin Dysmorphol 1983;1:20–2.

231. Merkler RG, Solish SB, Scherzer AL. Meningomyelocele and Hirschprung disease:
theoretical and clinical significance. Pediatrics 1985;76:299–300.

232. Papin C, van Grunsven LA, Verschueren K, Huylebroeck D, Smith JC. Dynamic
regulation of Brachyury expression in the amphibian embryo by XSIP1. Mech Dev
2002;111(1–2):37–46.

233. Van de Putte T, Francis A, Nelles L, van Grunsven LA, Huylebroeck D. Neural crest-
specific removal of Zfhx1b in mouse leads to a wide range of neurocristopathies
reminiscent of Mowat-Wilson syndrome. Hum Mol Genet 2007;16:1423–36.

234. Hurst JA, Markiewicz M, Kumar D, Brett EM. Unknown syndrome: Hirschsprung’s
disease, microcephaly, and iris coloboma: a new syndrome of defective neuronal
migration. J Med Genet 1988;25:494–7.

235. Halal F, Morel J. The syndrome of Hirschsprung disease, microcephaly, unusual
face, and mental retardation. Am J Med Genet 1990;37:106–8.

236. Reish O, Gorlin RJ, Hordinsky M, Rest EB, Burke B, Berry SA. Brain anomalies,
retardation of mentality and growth, ectodermal dysplasia, skeletal malformations,
Hirschsprung disease, ear deformity and deafness, eye hypoplasia, cleft palate,
cryptorchidism, and kidney dysplasia/hypoplasia (BRESEK/BRESHECK): new X-linked
syndrome? Am J Med Genet 1997;68:386–90.

Review

J Med Genet 2008;45:1–14. doi:10.1136/jmg.2007.053959 13

 group.bmj.com on August 4, 2011 - Published by jmg.bmj.comDownloaded from 

http://jmg.bmj.com/
http://group.bmj.com/


237. Tobin JL, Beales PL. Bardet-Biedl syndrome: beyond the cilium. Pediatr Nephrol
2007;22:926–36.

238. Stone DL, Slavotinek A, Bouffard GG, Banerjee-Basu S, Baxevanis AD, Barr M,
Biesecker LG. Mutation of a gene encoding a putative chaperonin causes McKusick-
Kaufman syndrome. Nat Genet 2000;25:79–82.

239. Slavotinek AM, Stone EM, Mykytyn K, Heckenlively JR, Green JS, Heon E,
Musarella MA, Parfrey PS, Sheffield VC, Biesecker LG. Mutations in MKKS cause
Bardet-Biedl syndrome. Nat Genet 2000;26:15–16.

240. Wassif CA, Maslen C, Kachilele-Linjewile S, Lin D, Linck LM, Connor WE, Steiner
RD, Porter FD. Mutations in the human sterol delta7-reductase gene at 11q12-13
cause Smith-Lemli-Opitz syndrome. Am J Hum Genet 1998;63:55–62.

241. Waterham HR, Wijburg FA, Hennekam RC, Vreken P, Poll-The BT, Dorland L, Duran
M, Jira PE, Smeitink JA, Wevers RA, Wanders RJ. Smith-Lemli-Opitz syndrome is
caused by mutations in the 7-dehydrocholesterol reductase gene. Am J Hum Genet
1998;63:329–38.

242. Sulisalo T, Sistonen P, Hastbacka J, Wadelius C, Makitie O, de la Chapelle A,
Kaitila I. Cartilage-hair hypoplasia gene assigned to chromosome 9 by linkage
analysis. Nat Genet 1993;3:338–41.

243. de Pontual L, Pelet A, Trochet D, Jaubert F, Espinosa-Parrilla Y, Munnich A, Brunet
JF, Goridis C, Feingold J, Lyonnet S, Amiel J. Mutations of the RET gene in isolated
and syndromic Hirschsprung’s disease in human disclose major and modifier alleles
at a single locus. J Med Genet 2006;43:419–23.

244. Miao X, Garcia-Barcelo MM, So MT, Leon TY, Lau DK, Liu TT, Chan EK, Lan LC,
Wong KK, Lui VC, Tam PK. Role of RET and PHOX2B gene polymorphisms in risk of
Hirschsprung’s disease in Chinese population. Gut 2007;56:736.

245. Hofstra RM, Elfferich P, Osinga J, Verlind E, Fransen E, Lopez Pison J,
de Die-Smulders CE, Stolte-Dijkstra I, Buys CH. Hirschsprung disease and

L1CAM: is the disturbed sex ratio caused by L1CAM mutations? J Med Genet
2002;39:E11.

246. Parisi MA, Kapur RP, Neilson I, Hofstra RM, Holloway LW, Michaelis RC, Leppig
KA. Hydrocephalus and intestinal aganglionosis: is L1CAM a modifier gene in
Hirschsprung disease? Am J Med Genet 2002;108:51–6.

247. Ikeda K, Goto S. Additional anomalies in Hirschsprung’s disease: an analysis based
on the nationwide survey in Japan. Z Kinderchir 1986;41:279–81.

248. Edward E, Ecker J, Christakis N, Folkman J. Hirschsprung’s disease: associated
abnormalities and demography. J Pediatr Surg 1992;27:76.

249. Russell MB, Russell CA, Niebuhr E. An epidemiological study of Hirschsprung’s
disease and additional anomalies. Acta Paediatr 1994;83:68–71.

250. Sarioglu A, Tanyel FC, Buyukpamukcu N, Hicsonmez A. Hirschsprung-associated
congenital anomalies. Eur J Pediatr Surg 1997;7:331–7.

251. Lore F, Di Cairano G, Talidis F. Unilateral renal agenesis in a family with medullary
thyroid carcinoma. N Engl J Med 2000;342:1218–9.

252. Whalen TV Jr, Asch MJ. Report of two patients with hypertrophic pyloric stenosis
and Hirschsprung’s disease. Coincident or common etiology? Am Surg
1985;51:480–1.

253. Sayed M, al-Alaiyan S. Agenesis of corpus callosum, hypertrophic pyloric stenosis
and Hirschsprung disease: coincidence or common etiology? Neuropediatrics
1996;27:204–6.

254. Janik JP, Wayne ER, Janik JS, Price MR. Ileal atresia with total colonic
aganglionosis. J Pediatr Surg 1997;32:1502–3.

255. McCallion AS, Stames E, Conlon RA, Chakravarti A. Phenotype variation in two-
locus mouse models of Hirschsprung disease: tissue-specific interaction between
Ret and Ednrb. Proc Natl Acad Sci U S A 2003;100:1826–31.

Date for your diary

International Forum on Quality & Safety in Health Care
22–25 April 2008
Le Palais de Congrès de Paris
Paris, France
http://www.internationalforum.bmj.com
Why attend?
c Join over 1000 healthcare professionals from over 40 countries worldwide
c Learn from experienced leaders and improvement experts
c Find out what is current in quality and safety
c Gain new skills and tools for creating change in your organisation
c Take home practical solutions for improvement methods
c Network with like-minded colleagues

This is a premier event for those dedicated to improving quality and safety in healthcare. Our focus is
on practical, take-home ideas that will leave you inspired to implement valuable, lasting change on your
return to the workplace.
Register online from January 2008 onwards
For more information on the forum visit - http://www.internationalforum.bmj.com

Review

14 J Med Genet 2008;45:1–14. doi:10.1136/jmg.2007.053959

 group.bmj.com on August 4, 2011 - Published by jmg.bmj.comDownloaded from 

http://jmg.bmj.com/
http://group.bmj.com/


doi: 10.1136/jmg.2007.053959
2007

 2008 45: 1-14 originally published online October 26,J Med Genet
 
J Amiel, E Sproat-Emison, M Garcia-Barcelo, et al.
 
syndromes and genetics: a review
Hirschsprung disease, associated

 http://jmg.bmj.com/content/45/1/1.full.html
Updated information and services can be found at: 

These include:

References

 http://jmg.bmj.com/content/45/1/1.full.html#related-urls
Article cited in: 
 

 http://jmg.bmj.com/content/45/1/1.full.html#ref-list-1
This article cites 252 articles, 71 of which can be accessed free at:

service
Email alerting

the box at the top right corner of the online article.
Receive free email alerts when new articles cite this article. Sign up in

Collections
Topic

 (5667 articles)Epidemiology    
 (688 articles)Clinical genetics    

 (1228 articles)Editor's choice    
 
Articles on similar topics can be found in the following collections

Notes

 http://group.bmj.com/group/rights-licensing/permissions
To request permissions go to:

 http://journals.bmj.com/cgi/reprintform
To order reprints go to:

 http://group.bmj.com/subscribe/
To subscribe to BMJ go to:

 group.bmj.com on August 4, 2011 - Published by jmg.bmj.comDownloaded from 

http://jmg.bmj.com/content/45/1/1.full.html
http://jmg.bmj.com/content/45/1/1.full.html#ref-list-1
http://jmg.bmj.com/content/45/1/1.full.html#related-urls
http://jmg.bmj.com/cgi/collection/editors_choice
http://jmg.bmj.com/cgi/collection/clinical_genetics
http://jmg.bmj.com/cgi/collection/epidemiology
http://group.bmj.com/group/rights-licensing/permissions
http://journals.bmj.com/cgi/reprintform
http://group.bmj.com/subscribe/
http://jmg.bmj.com/
http://group.bmj.com/

